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Abstract 

Medulloblastoma, the most prevalent malignant brain tumour in children, necessitates precise 

diagnostic methods due to its heterogeneous molecular subgroups. This study leverages Random Forest 

machine learning algorithms to classify medulloblastoma subgroups by analysing DNA methylation 

and gene expression data. Utilising the Gene Expression Omnibus dataset GSE85218 — comprising 763 

primary MB samples — the study implements variance threshold feature selection for preprocessing. 

Models were evaluated based on precision, recall, F1 score, and accuracy — with the highest 

performance observed in models utilising Top 1% varied combined DNA methylation and gene 

expression data. Models performed similarly however, meaning only targeted gene expression and 

DNA methylation data are required for an accurate diagnosis. Gene Set Enrichment Analysis (GSEA) 

identified significant pathways related to neural processes, underscoring the tumour’s impact on neural 

development and function. Biomarkers were identified from the most important features identified by 

the ML model, with possible new biomarkers for subgroup diagnosis being discovered. 

 

 

 

1. Introduction 

Among children from the ages of 5-9 within the 

US, cancer is the second leading cause of death 

(CDC, 2024). Cancer is a disease stemming from 

mutations within the DNA of the cell, leading to 

abnormal cell proliferation. As such, they 

buildup in masses of tissue known as tumours, 

disrupting organ activity and sapping nutrients 

from healthy cells, ultimately leading to death. 

As the most common malignant brain tumour 

amongst children, accounting for around 20% of 

all brain tumours (Rossi et al., 2008), 

medulloblastoma (MB) is specifically 

problematic due to its wide array of molecular 

subgroups, all having varying survival rates. The 

four main molecular subgroups identified are 

Wingless Activated (WNT), Sonic Hedgehog 

(SHH), Group 3, and Group 4 (Taylor et al., 2011). 

The five-year survival rates for WNT are over 

90%, while the survival rates for other subgroups 

are much lower by comparison, with Group 3 MB 

patients only being around 50% (Tenley et al., 

2017). As the genetic and epigenetic makeups of 

each subgroup of MB are different, distinct 

clinical procedures must be followed based on 

the diagnosis (Ray et al., 2021). Hence, accurate 

prognosis is crucial for personalised therapy and 

improved treatment. 

DNA methylation sequencing and gene 

expression profiling are indispensable in 

providing insight towards the molecular 

subgroup. However, the aforementioned 
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processes are quite expensive (Orr, B.A., 2020). By 

targeting specific regions rather than sequencing 

the entire genome, costs could be reduced. Recent 

advancements in technology have allowed for 

generation of DNA methylation and gene 

expression profiles in publicly accessible 

datasets. These datasets provide a valuable 

resource for identifying biomarkers associated 

with MB subtypes. To properly utilise the 

aforementioned datasets, appropriate 

computational methods must be utilised.  

Machine learning (ML) has become an essential 

tool in the analysis of large-scale biological data, 

enabling researchers to uncover complex 

patterns and relationships that are not 

immediately apparent. By leveraging ML 

techniques, scientists can efficiently process and 

analyse vast amounts of data, identifying key 

features and biomarkers for classification 

purposes (Larrañaga et al., 2006). These 

computational methods can also enhance the 

accuracy and speed of data interpretation, 

facilitating the development of targeted therapies 

and personalized medicine (Libbrecht & Noble, 

2015). An appropriate ML model for cancer 

classification is Random Forest. 

Random Forest is a supervised machine learning 

method for classification (Ho, 1995). The 

algorithm constructs multiple decision trees 

during training, outputting the mode of resultant 

classes for improved reliability (Breimen, 2001). 

The classification method is commonly used in 

bioinformatics, and related research has shown 

promising levels of accuracy (Minnoor & Baths, 

2023; Cavalli et al., 2017). 

This study aims to utilise machine learning 

algorithms to predict medulloblastoma 

subgroups based on biomarker data; 

understanding the scope of data required for an 

accurate classification, as well as identifying 

biological pathways and biomarkers after 

obtaining results. Through analysis of DNA 

methylation and gene expression data in primary 

MB samples, the study hopes to compare the 

performance of the Random Forest classifier with 

varied amounts of data. The study will also 

investigate the change in effectiveness when 

training models with gene expression and DNA 

methylation data together rather than separately. 

The most important pathways and biomarkers 

identified through the classifier will also be 

analysed, finding new further research directions 

to better understand the disease. 

2. Results 

For each variance threshold (Top 1%, 0.5%, 100), 

3 models were developed; one utilising both 

methylation and gene expression data, one using 

gene expression data exclusively, and one 

inputting methylation data. Table 1 displays the 

results from each model: 

 

Table 1. Random Forest model comparison 

Input Accuracy (%) Mean CVA (%) 

Top 1% DNA Methylation profiling + gene expression data 98.68 98.73 

Top 1% DNA methylation profiling only 98.68 98.65 

Top 1% gene expression data only 96.71 98.81 

Top 0.5% DNA Methylation profiling + gene expression data 98.68 98.54 

Top 0.5% DNA methylation profiling only 98.68 98.35 

Top 0.5% gene expression data only 98.03 97.81 

Top 100 DNA Methylation profiling + gene expression data 98.03 98.44 

Top 100 DNA methylation profiling only 98.03 96.86 

Top 100 gene expression data only 98.68 97.78 

 

Overall, the Random Forest classifier 

demonstrated high accuracy and robustness 

across different data inputs, maintaining 

accuracies and mean 5-fold cross validation 

accuracies above 95%. While the model with the 

highest combined accuracy and mean cross 

validation is the model which inputted the top 

1% of both datasets, the difference in average 

performance compared to all other models is 

negligible. This signifies an accurate subgroup 

diagnosis does not require vast amounts of data, 

merely the most relevant genes/methylation 
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markers. 

The WNT subgroup displayed higher levels of 

recall when sorted using exclusively gene 

expression data, specifically the models beyond 

top 1% (Table 1). This could insinuate some noise 

within the cutoff from top 1% to top 0.5%, 

hindering the performance of WNT classification. 

Gene Set Enrichment Analysis 

Results taken from Enrichr for genes associated 

with the top 1% variance genes and methylation 

data includes the three most enriched pathways 

identified from each database. 

 

Table 2. Pathways identified 

Database Pathway Odds Ratio 
Combined 

score 
P-value 

Adjusted 

P-value 

KEGG 2021 

Human 

Glutamatergic Synapses 4.30 84.31 3.088e-9 8.862e-7 

Nicotine Addiction Axon 

Guidance 

6.74 

2.69 

97.07 

33.10 

5.596e-7 

4.458e-6 

8.031e-5 

4.265e- 

Reactome 2022 

Neuronal System R-HSA-

112316 
2.84 75.62 2.688e-12 3.378e-9 

Transmission Across 

Chemical Synapses R-

SHA-112315 

2.92 55.44 5.542e-9 3.483e-6 

Netrin-1 Signalling R-

HSA-112316 
5.01 58.36 8.619e-6 3.611e-3 

GO Biological 

Process 2023 

Nervous System 

Development 
2.97 96.08 8.483e-15 3.095e-11 

Axonogenesis 3.65 84.44 8.883e-11 1.620e-7 

Regulation of 

Transcription by RNA 

Polymerase II 

1.66 37.30 1.695e-10 2.061e-7 

DisGeNet 

Autism Disorder 2.38 68.00 3.792e-13 2.734e-9 

Medulloblastoma 2.35 57.80 2.032e-11 6.732e-8 

Alcohol Intoxication 

(Chronic) 
2.62 63.26 3.249e-11 6.732e-8 

 

Reactome 2022 analysis identified Neuronal 

System, Transmission Across Chemical 

Synapses, and Netrin-1 Signalling, all neural 

processes. This reinforces the association of such 

genes to medulloblastoma, hinting at its potential 

to interrupt neuronal functions, disrupt synaptic 

transmissions, and contribute to abnormal cell 

migration differently based on the subgroup. The 

low P-values also indicates an extremely strong 

association.  

KEGG Human 2021 analysis identified 

Glutamatergic Synapse, Nicotine Addiction, and 

Axon Guidance as the primary pathways. 

Enrichment of Glutamatergic Synapses indicates 

dysregulation of the pathway may lead to 

differences in medulloblastoma 

pathophysiology. There is a possibility that 

targeting glutamate receptors and transporters 

may offer therapeutic benefits. Nicotine 

Addiction interacts with dopamine signalling 

and reward pathways, insinuating possible 

different levels of dopamine signalling based on 

the MB subgroup. Axon Guidance refers to the 

navigation of growing axons to targeted locations 

for the establishment of neural networks. Its 

enrichment suggests aberrant axon guidance 

signalling in MB can lead to disorganised neural 

tissue. This finding is consistent with the Netrin-

1 Signalling pathway identified from the 

Reactome database. Again, the minimal P- values 

provides legitimacy to the findings.  

GO Biological Process 2023 analysis identified 

Nervous System Development, Axonogenesis, 

and Regulation of Transcription by RNA 
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Polymerase II. Nervous System Development 

involves the formation and growth of the 

nervous system, consistent with pathways found 

previously. Enriched Axonogenesis suggests 

medulloblastoma’s involvement in disrupting 

the ability for axons to form neural networks, 

again consistent with other pathways identified. 

Enrichment of Regulation of Transcription by 

RNA Polymerase II suggests dysregulation of 

transcriptional processes due to MB, possibly 

leading to overexpression of oncogenes or under-

expression of tumour suppressors, leading to 

malignant growth. Low P-values ensure 

reliability of pathways identified.  

Finally, DisGeNet identified pathways 

correlating with autism disorder, 

medulloblastoma, and alcohol intoxication 

(Chronic). The three diseases are all related to 

neurological processes, and could suggest 

common genetic or epigenetic factors between 

the diseases.  

Biomarker Identification 

The genes in Table 3 were associated with the top 

20 most important classification features 

identified by the Random Forest model for the 

input of Top 100 mixed. 

Downloading all genes most relevant to 

medulloblastoma from Gene Cards, only the 

following three were within the list: SGK1, 

CAMTA1, OTX2. 

 

Table 3. Biomarkers identified not within Gene Cards 

Biomarker Role Significance Previous studies 

EXOC5 

Component of exocyst 

complex, involved in 

cellular transport and 

signalling 

Mutation may cause 

disruptions in cell signalling, 

which are common within 

cancers (including MB) 

Shin et al. (2019) found 

EXOC5 overexpression 

leads to breast cancer 

progression due to 

increased cell invasion 

and proliferation. 

TXNDC15 

Protein coding gene and 

positive regulator of 

Ciliary Hedgehog (HH) 

signalling 

SHH pathway is a component 

of the HH pathway, therefore 

maybe critical to identifying 

SHH subgroup MB 

Mutations in HH pathway 

are directly affiliated with 

MB (Fujia et al., 2017) 

LINC02058 

Long non-coding RNA 

(lncRNA), regulating 

processes such as cell 

proliferation or apoptosis 

(Liu et al., 2024) 

lncRNAs are generally 

implicated in cancers through 

regulation of oncogenes and 

tumour suppressors. 

Previous study has 

confirmed potential for 

lncRNAs as biomarkers 

for MB (Kesherwani et al., 

2020) 

H3K27AC 

Not a genebut a histone 

modification associated 

with regulation of gene 

transcription 

Methylation may lead to 

epigenetic dysregulations, 

affecting cell processes 

leading to cancer. 

Lin et al. (2016) revealed 

H3K27AC methylation 

could affect gene 

expression patterns 

particularly in SHH and 

Group 3 MB 

SASH1 

Scaffolding protein 

involved in signal 

transduction and tumour 

suppression. Involved in 

TLR4 signalling pathway 

Shown associations with 

cancer, so maybe case for MB 

as well. Mutation may lead to 

reduced tumour suppression 

capabilities 

Liu et al. (2015) found 

SASH1 expression to 

directly correlate with 

Glioma’s (another Brain 

tumour) survival rates 

RREB1 

Zinc finger transcription 

factor, regulating gene 

expression 

Dysregulations of 

transcriptional factors may 

lead to overexpression and 

uncontrolled cell 

proliferation 

RREB1 was found to be 

directly correlated with 

Group 3 MB (Masihi et al., 

2020) 

CYBRD1 Involved in iron Could impact MB cancer cell CYBRD1 upregulation is 
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metabolism metabolism and proliferation. 

Shown association with other 

cancers. 

shown to be linked to 

Ovarian cancer (Chen et 

al., 2021) 

ZSWIM5 

Protein coding gene. Zinc 

finger SWIM-type 

containing 5 proteins. 

Role in axon guidance as 

well as brain 

development 

Connected to brain 

development as well as axon 

guidance, may affect how MB 

cells affect surrounding 

nervous tissue. 

Xu et al. (2018) found 

ZSWIM5 expression 

linked to tumour 

suppression in Lung 

cancer 

CDHR1 

Protein coding gene 

encoding a 

photoreceptor- specific 

cadherin. Mainly 

connected to the eye 

Photoreceptor encoding 

genes have been shown to be 

expressed in MB cases. Could 

be due to common progenitor 

cells between neural and 

optical cells in early 

development. (Gabriel et al., 

2021) 

Castillo-Rodriguez et al. 

(2018) found CDHR1 to be 

linked to Group 4 MB 

subtype classification 

Photoreceptor genes are 

shown to be expressed in 

specific MB classifications 

(Kool et al., 2008) 

RPGRIP1 

Protein coding gene 

encoding photoreceptor 

protein 

Photoreceptor encoding 

genes have been shown to be 

expressed in MB cases. Could 

be due to common progenitor 

cells between neural and 

optical cells in early 

development. (Gabriel et al., 

2021) 

RPGRIP1 is shown to be 

expressed in specific MB 

classifications (Kool et al., 

2008) 

FBXL21 

Pseudogene heavily 

involved in regulation of 

circadian rhythm 

Mutation may lead to 

disruption of circadian 

rhythms, significantly 

associated with cancers 

Circadian rhythms were 

found to impact Glioma 

(Brain tumour) 

physiopathology (Wang et 

al., 2022) 

RIPOR2 

Inhibitor of small G 

protein RhoA which 

regulates myoblast and 

hair cell differentiation 

RhoA has been associated 

with oncological processes as 

well as the WNT pathway 

Rodrigues et al. (2014) 

found RhoA expression to 

reduce WNT signalling as 

well as suppressing 

Colorectal cancer 

LEMD1 

Protein coding gene 

connected to Pancreatic 

cancer subtypes and 

Colorectal cancer 

Connection to other cancers, 

dysregulation may impact 

cell signalling pathways 

Kool et al. (2008) found 

LEMD1 to be associated 

with non WNT and SHH 

subgroup MB 

PLPPR4 

Protein coding gene, 

involved in 

glutamatergic neuron 

pathway 

Glutamatergic neuron 

pathways are strongly 

associated with MB 

Hooper et al. (2014) found 

SHH, Group 3, and Group 

4 MB to all Glutamatergic 

neuron pathways 

 

This could indicate the discovery of new 

medulloblastoma biomarkers linked to 

previously identified significant pathways, along 

with corroboration of previously identified 

biomarkers. Overall, the GSEA confirmed the 

pathways of the gene expression and methylation 

data’s relation to medulloblastoma, as well as 

introducing possible new biomarkers for 

medulloblastoma diagnosis and subgroup 

identification.  

3. Discussion 

This study utilised the Random Forest machine 

learning algorithm to analyse DNA methylation 

and gene expression data from primary 
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medulloblastoma samples, aiming to identify 

significant biological pathways associated with 

different medulloblastoma subgroups. The 

results from the Gene Set Enrichment Analysis 

(GSEA) and subsequent pathway analysis 

provide credibility to the data’s association with 

medulloblastoma and important insights into the 

molecular mechanisms underlying 

medulloblastoma.  

The classification accuracy using the Random 

Forest model averages at around 98%, similar to 

Cavalli et al. (2017). Utilising the same dataset, 

their model achieved a higher classification 

accuracy for WNT subgroups generally, while 

being generally worse in Group 3 classification 

compared to this study’s models. Compared to 

Gershanov et al. (2021) which input exclusively 

gene expression data from the same dataset 

which achieved an accuracy of 97.8%, this study’s 

gene expression exclusive models overall 

performed similarly.  

The increased recall exclusively stemming from 

gene expression data lends credibility to 

exclusivities in patterns based on if the data used 

is gene expression or DNA methylation 

mentioned in subtype classification also being 

applicable to subgroup classification (Cavalli, 

Florence M G et al., 2017). The sustained 

similarities throughout methylation data model 

results and mixed model results could indicate a 

favouring of methylation data within the training 

process, possibly stemming from the higher 

number of variables (probes).  

The recall of WNT being higher from models 

trained exclusively using gene expression data 

compared to models including DNA methylation 

profiling could lend slight credibility to the claim 

that DNA methylation and gene expression 

contribute differently to the molecular 

differences between subgroups, expanding to the 

claim by Florence et al. (2017) that “both DNA 

methylation and gene expression contributing to 

the heterogeneity observed within each 

subgroup.” 

Pathways identified through the Reactome 2022 

Database are crucial for neuronal function and 

communication. These findings align with Ray et 

al. (2021), which emphasised the role of neural 

development pathways in different 

medulloblastoma subtypes, suggesting that 

disruptions in these pathways contribute to 

tumorigenesis and progression. 

Enriched pathways highlighted by KEGG human 

2021 include functions of synaptic transmission 

and glutamatergic synapse signalling. The 

finding that medulloblastoma may lead to an 

upregulation in the aforementioned pathways is 

consistent with Korshunovva et al. (2019). 

Roussel et al. (2011) also noted the significance of 

neural development pathways in 

medulloblastoma, reinforcing this study’s 

findings. 

The DisGeNet analysis identified significant 

associations with diseases such as autism 

disorder, medulloblastoma, and chronic alcohol 

intoxication. The association with autism 

spectrum disorder (ASD) suggests that common 

genetic or epigenetic factors may underlie both 

medulloblastoma and ASD. This is supported by 

previous studies indicating shared molecular 

mechanisms between neurodevelopmental 

disorders and brain tumours Ray et al. (2021). 

The genes from the most significant variables 

identified by the Random Forest classifier 

included multiple biomarkers previously 

associated with MB subgroup classification. The 

newly discovered biomarkers are the following: 

EXOC5, LINC02058, SASH1, CYBRD1, ZSWIM5, 

FBXL21, PLPPR4. 

4. Limitations and Future Research Directions 

The reason the WNT subgroup received 

suboptimal results compared to other subgroups 

within methylation and mixed trials could also be 

due to a lower number of samples, and thus data 

within the dataset. Results from methylation 

input models and mixed models are extremely 

similar, insinuating a tendency for the Random 

Forest classifier to favour methylation data, most 

likely as there are more probes.  

Experimental testing to solidify associations of 

newly identified pathways and biomarkers 

related to medulloblastoma subgroup 

classification is required. Furthermore, 

understanding their roles in MB development 

and propagation maybe crucial to clinical 

diagnoses and treatments to improve survival 

rates.  

5. Methodology 
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Figure 1. Flowchart 

 

Figure 1 represents the general workflow utilised 

for this research. Data is downloaded from GEO, 

then pre-processed. Features selection limits 

variables accounted for in the Random Forest 

classifier to only the most relevant, reducing 

computing power required as well as reducing 

noise. This splits the data into three sets for DNA 

methylation profiling and gene expression data 

each. The data are split into training and testing 

sets, and used to train the Random Forest 

algorithm. During training, 5-fold cross-

validation is used to ensure reliability, and 

hyperparameter tuning is used to improve 

accuracy. Then the models are tested with the 

testing set. Gene set enrichment analysis is 

subsequently undertaken to understand the 

biological pathways related the classification in 

detail. Biomarkers identified from the model are 

also investigated.  

Dataset Description 

The dataset “DNA methylation and gene 

expression profiling of primary medulloblastoma 

samples” was downloaded from the online 

database Gene Expression Omnibus (GEO) 

under the GEO accession code GSE85218. The 

dataset includes 763 primary medulloblastoma 

samples, each with a DNA methylation profile 

and a gene expression profile. Each sample is also 

classified as one of the 4 medulloblastoma 

subgroups; 70 WNT samples, 223 SHH samples, 

144 Group 3 samples, and 326 Group 4 samples 

respectively.  

Each sample has methylation profiling on 321174 

probes, as well as gene expression data on 21641 

genes. This amount of data is unnecessary and 

leads to longer processing times and inaccurate 

results due to the noise. Hence, feature selection 

is necessary to root out the most relevant probes 

and genes.  

Data Preprocessing 

The files are in txt format, with the samples as the 

columns and the data as the rows. They are 

transposed and converted to csv to be used for 

machine learning. The gene expression data also 

had irrelevant labels for gene names, which were 

removed within the preprocessing process. 

Feature Selection 

As mentioned previously, having excess 

amounts of data leads to inefficiencies and 

possible inaccuracies. Therefore, variance 

th19reshold feature selection was employed to 

identify the most informative features from the 

gene expression and DNA methylation data. This 

method prioritises features which show the 

greatest variability across samples under the 

assumption that these features are more likely to 

be biologically significant. 

First, the variances across the gene expression 

and methylation datasets are calculated 

individually. The features which displayed the 

highest (top 1%/0.5%/100) variances are then 

saved into separate csv files, while the rest are 

discarded, reducing the dimensionality of the 

data. Three separate pairs of gene 

expression/methylation data resulted from this 

process (top 1%/0.5%/100 variance), leaving 

methylation profiling with (3212/1606/100) 

probes and gene expression data with 

(216/108/100) genes respectively. 

Model Training 

The 763 medulloblastoma samples are split into a 

training set and testing set randomly; the training 

set contains 80% of every subgroup’s sample 

while the testing set contains 20% of every 

subgroup’s samples. The processed training sets 

are then inputted into the Random Forest 

classifier from Sci-kit Learn in python. The model 

parameters were optimised using a grid search 

with cross-validation to achieve the best possible 

performance. Below are the modified 

parameters:  

 

Table 4. Hyperparameters utilised 

Hyperparameter Value Description 

n_estimators 100, 200, 300 Number of trees in the forest 
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max_depth 10, 20, 30, None Maximum depth of the tree 

min_samples_split 2, 5, 10 Number of samples required to split an internal node 

min_samples_leaf 1, 2, 4 Minimum number of samples required to be a leaf node 

 

While the Random Forests taking in exclusively 

DNA methylation data or exclusively gene 

expression data could be directly inputted, 

Random Forests which take in both DNA 

methylation data and gene expression data 

required standardisation. The data were 

standardised to have a mean of 0 and a standard 

deviation of 1, ensuring equal weighting of the 

data.  

In essence, 5-fold cross validation splits the 

training data into five equal folds and engages in 

five iterations with one fold as the testing set and 

the rest as training sets, then shuffling the folds 

until all folds have been used as the testing set. 

By doing so, it prevents overfitting and leads to 

higher general reliability (Berrar, 2019).  

To evaluate the results of the Random Forest 

classifier, appropriate metrics must be applied. 

All models trained were evaluated based on the 

metrics in Table 5. Overall, each feature selected 

dataset underwent 10 trials, with the highest 

mean 5-fold cross validation accuracy 

determining the most successful model used to 

test the testing set. The final model’s performance 

was evaluated based on its accuracy in predicting 

the medulloblastoma subgroups. The evaluation 

metrics included overall accuracy, precision, 

recall, and F1 score. These metrics provided a 

comprehensive assessment of the model’s 

predictive capabilities.  

 

Table 5. Definitions of metrics used 

Metric Definition Symbol/Formula 

True positives 
Number of correctly predicted 

positives TP 

True negatives 
Number of correctly predicted 

negatives TN 

False positives 
Number of incorrectly 

predicted positives FP 

False negatives 
Number of incorrectly 

predicted negatives FN 

Accuracy 

Ratio of correctly predicted 

observations against total 

predicted observations 

TP + TN

TP + TN + FP + FN
 

Precision 

Ratio of correctly predicted 

positive observations against 

total predicted positive 

observations for each 

classification 

𝑇𝑃

TP + FP
 

Recall 

Ratio of correctly predicted 

positive observations against 

total observations which fit the 

classification 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Macro Average (MA) 

Unweighted mean of 

precision, recall, and F1 score 

over all classifications, not 

taking into account sample 

size for each classification 

Eg:
𝐴𝑐𝑐(1) + ⋯ 𝐴𝑐𝑐(𝑁)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑒𝑠
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Weighted Average (WA) 

Weighted mean of precision, 

recall, and F1 score over all 

classifications, taking into 

account sample size for each 

classification 

Eg:
𝐴𝑠𝑠(1) ∙ 𝑆𝑎𝑚𝑝𝑙𝑒(1) + ⋯

2𝑎𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

F1 Score 
WA of precision and recall for 

the specific classification 
2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Mean Cross Validation 

Accuracy (Mean CVA) 

Average 5 fold cross 

validation accuracy over 10 

trials; ameasure of reliability 

𝑀𝑒𝑎𝑛𝑐𝑣(1) + ⋯ 𝑀𝑒𝑎𝑛𝑐𝑣(𝑁)

𝑁
 

 

Gene set enrichment analysis (GSEA) 

 The top 1% of methylation data and gene 

expression data (Table 2) are analysed through 

GSEA, to better understand the biological 

pathways regarding medulloblastoma 

subgrouping. Methylation probes are mapped to 

their respective genes via the Illumina 

HumanMethylation450 Beadchip’s annotation 

file, while the Ensembl ids are mapped to their 

genes via the Affymetrix Human Gene 1.1 ST 

Array’s annotation file. Then, the genes are 

placed into Ma’ayan laboratory’s online GSEA 

program Enrichr for analysis. The metrics for 

significance of each pathway within Enrichr 

(aside from adjusted P-value) is calculated using 

Fisher’s exact test, a statistical significance test 

used to determine if there are non-random 

associations between two categorical variables in 

a contingency table. (Fisher, 1925) 

After this, the 20 most significant features 

identified by the Random Forest Classifier from 

the top 100 mixed model are analysed and 

compared to previously identified biomarkers for 

medulloblastoma.  

 

Table 6. Enrichr pathway databases used 

Database Category Description 

Kegg 2021 Human Pathway A comprehensive encyclopaedia for understanding biological 

functions 

Reactome 2022 Pathway Database of pathways and reactions in the human biology 

GO Biological 

Process 2023 

Ontologies Assists with helping understanding roles of genes in biological 

processes 

DisGeNet Disease Information on common and rare gene-disease associations 

 

Table 7. Pathway metrics 

Metric Definition 

P-value Probably of obtaining observed results assuming there is no relation between the 

pathway and the data 

Adjusted P-value P-value adjusted to account for multiple tests, reducing the chance of false 

positives. 

Odds Ratio Likelihood of an event occurring in the presence of a particular condition 

compared to its absence. Returns z-score to assess deviation from expected rank 

Combined score Log of P-value multiplied by Odds ratio. 
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