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Abstract 

This study investigates the spatial distribution and environmental implications of heavy metal 

concentrations in soils along a downslope gradient in the Mayon Volcano fluvial system, Philippines. 

Fifteen georeferenced sampling plots were established across three slope zones—upper (800–1000 m), 

middle (400–600 m), and lower (50–200 m)—to evaluate the concentrations of six metals: Fe, Mn, Zn, 

Cu, Pb, and Cr. Soil samples were analyzed using microwave-assisted acid digestion followed by AAS 

quantification. Results revealed statistically significant increases in all target metals with decreasing 

elevation, with the highest concentrations consistently observed in the agriculturally active lower 

slopes. ANOVA and Tukey’s HSD tests confirmed that Fe, Zn, and Cu displayed the strongest 

elevation-based variance (p < 0.01), while pollution indices such as the Geoaccumulation Index (I_geo) 

and Contamination Factor (CF) indicated moderate contamination by Pb and Cr in depositional 

floodplain zones. These patterns were attributed to lahar-mediated sediment transport, grain-size 

sorting, and organic matter-metal interactions in lowland soils. The environmental implications are 

substantial: elevated bioavailable metals pose risks to food safety, human health, and long-term soil 

productivity. Findings highlight the need for integrated land use planning, soil remediation practices, 

and community-based monitoring in volcanic agroecosystems. 
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1. Introduction 

The Mayon Volcano, situated in the Bicol Region 

of the Philippines, is among the most active 

stratovolcanoes in the Pacific Ring of Fire, with 

over 50 recorded eruptions since the 17th 

century. Its distinctive conical shape belies the 

complex geomorphological and geochemical 

processes that influence the surrounding 

landscape. One of the most significant of these 

processes is the downslope movement of 

volcanic materials, which plays a critical role in 

shaping both the physical and chemical 

composition of soils in the region. 

Fluvial systems that originate from the volcano 

serve as natural conduits for the transport of 

weathered volcanic materials—including ash, 

scoria, and laharic debris—toward lowland 

areas. These materials are often rich in metals 

such as iron (Fe), manganese (Mn), copper (Cu), 

zinc (Zn), lead (Pb), and chromium (Cr), which 

are either naturally present in volcanic ejecta or 

become concentrated through weathering and 

sediment sorting processes. The unique 

hydrology of Mayon’s watersheds, combined 
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with the region’s high rainfall and steep slopes, 

promotes rapid erosion and mass wasting, 

leading to intense sediment redistribution. 

The environmental consequence of this process 

is a gradient in soil chemistry that intensifies 

along the volcano’s slope. Upper slopes, 

typically characterized by active erosion and 

limited vegetation, display relatively low metal 

accumulation. In contrast, mid-slope 

areas—often used for agroforestry or abaca 

plantations—show intermediate levels due to 

partial sediment deposition. The lower slopes 

and floodplains, meanwhile, act as terminal 

sinks where metal-rich sediments accumulate, 

posing potential risks to agricultural 

productivity and public health through food 

chain contamination. 

Understanding the spatial distribution of heavy 

metals along this fluvial system is thus essential 

for assessing the ecological sustainability of land 

use in the region. Such assessments can inform 

local environmental management strategies, 

especially in communities whose livelihoods 

depend on agriculture and water resources 

derived from these fluvial systems. Moreover, 

this study provides a vital contribution to the 

broader field of environmental geochemistry by 

showcasing how volcanic activity and landscape 

processes jointly control metal mobility and 

retention in tropical soil systems. Despite 

previous efforts to characterize Mayon’s laharic 

flows and sediment transport mechanisms 

(Arguden & Rodolfo, 1990), relatively few 

studies have investigated the downslope 

chemical gradients that emerge over time, 

particularly with regard to bioavailable metals 

that affect human health and agricultural output. 

By focusing on the correlation between slope 

position and metal concentration, this research 

aims to bridge that knowledge gap and provide 

actionable insights for environmental 

monitoring and remediation programs in 

volcanic regions. 

2. Geological and Hydrological Background 

Mayon Volcano, located in the Albay province of 

Luzon Island, stands as the most iconic 

stratovolcano in the Philippines, rising over 

2,400 meters above sea level. As part of the 

Pacific Ring of Fire, Mayon has been 

characterized by frequent and often explosive 

eruptions, which have shaped not only the 

surrounding terrain but also the composition of 

local soils and sedimentary environments. The 

volcano’s geological history is marked by 

alternating layers of basaltic-andesitic lava flows, 

pyroclastic deposits, and tephra layers, creating 

a dynamic stratigraphy rich in volcanic 

materials. One of the defining geomorphological 

features of Mayon’s eruptive landscape is the 

formation of lahars—rapid, gravity-driven flows 

composed of volcanic debris, pyroclastic 

material, water, and sediment. These flows are 

especially prevalent during and after heavy 

rainfall events or typhoons, which mobilize 

loose volcanic deposits from Mayon’s upper 

slopes. The 1984 and 2006 eruptions, for 

example, triggered massive lahar flows that 

channeled through the river systems such as the 

Miisi, Anoling, and Yawa Rivers, transporting 

volcanic debris far into lowland settlements 

(Arguden & Rodolfo, 1990). 

These lahars and debris flows follow a dendritic 

drainage pattern that has developed over time 

as a response to both the volcano’s radial 

symmetry and the region’s intense precipitation 

regime. The fluvial networks originating from 

Mayon serve not only as conduits for sediment 

but also as agents of geochemical dispersion. As 

volcanic materials are eroded and carried 

downstream, they undergo both physical 

breakdown and chemical weathering, releasing 

heavy metals such as Fe, Mn, Cu, Zn, Pb, and Cr 

into the surrounding soils. Importantly, the 

hydrological regime of the region amplifies this 

redistribution process. With an annual average 

rainfall exceeding 3,000 mm, especially during 

the monsoon and typhoon seasons, surface 

runoff and slope wash are dominant forces that 

transport fine sediments enriched in metals 

downslope. The combination of steep 

topography, unconsolidated pyroclastic deposits, 

and frequent high-intensity rainfall events 

creates an ideal setting for soil erosion and 

sediment transport. 

The fluvial systems become repositories for 

these redistributed materials. In the upper 

slopes, soils are typically thin, well-drained, and 

exhibit minimal metal retention due to steep 

gradients and active erosion. As elevation 

decreases, sediment deposition increases in the 

middle and lower slopes, where flow velocities 

decline and finer particles, including metal 

oxides and hydroxides, begin to accumulate. 

These depositional zones, especially in 

floodplains and agricultural areas, become 

critical sinks for metals and thus central to 

understanding the spatial pattern of soil 
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contamination. The dynamic nature of Mayon’s 

eruptive and erosional cycles means that these 

processes are not static. Each eruption resets and 

reshapes the landscape, generating new 

materials that feed into the fluvial system. 

Consequently, the study of metal concentration 

gradients in this region requires a temporal as 

well as spatial perspective, recognizing that past 

and present volcanic and hydrological events 

are intimately intertwined in determining soil 

geochemistry. 

The geological structure and hydrological 

behavior of the Mayon fluvial system establish a 

powerful mechanism for the mobilization and 

concentration of heavy metals in the landscape. 

The integration of volcanic activity, erosion, 

sediment transport, and deposition processes 

provides the necessary framework to investigate 

the evolving patterns of metal contamination in 

soils downslope of Mayon Volcano. 

3. Methodology 

3.1 Study Area and Sampling Design 

The research was conducted along three 

principal fluvial systems—Miisi River, Budiao 

River, and Yawa River—which dissect the 

southern slope of Mayon Volcano in Albay, 

Philippines. These rivers serve as primary 

conduits for laharic sediments mobilized during 

volcanic eruptions and typhoon-triggered debris 

flows. Historical records and satellite imagery 

from Philippine Institute of Volcanology and 

Seismology (PHIVOLCS) confirmed these 

channels’ role in sediment redistribution 

following the 2006, 2013, and 2018 eruptions. 

The fluvial landscape was stratified by elevation 

and land use to reflect variability in 

geomorphological processes and anthropogenic 

inputs: 

Upper Slope (800–1000 m asl): Exposed to active 

erosion, characterized by young pyroclastic 

deposits, minimal vegetation cover, and 

unconfined rilling. 

Middle Slope (400–600 m asl): Represented 

semi-stable cultivated terrain with abaca, banana, 

and camote plantations; subject to minor gully 

erosion. 

Lower Slope (50–200 m asl): Lowland 

depositional floodplain dominated by intensive 

rice agriculture, with fine-textured soils and 

seasonal flooding. 

Systematic grid sampling was adopted, placing 

5 sampling plots per slope category (total n = 15). 

Spacing was designed at 200 m intervals along 

elevation contours, adjusting for topographic 

constraints and landowner permissions. All 

sampling sites were georeferenced using a 

Garmin eTrex 30x GPS, and slope angles were 

validated with a Suunto PM-5/360 clinometer. 

Soil types were cross-referenced with Bureau of 

Soils and Water Management (BSWM) digital 

maps for classification accuracy. 

 

Table 1. Sampling Site Metadata and Land Use Context 

Plot ID Elevation (masl) Coordinates (WGS84) Land Use Slope (%) Soil Type 

U1–U5 800–1000 N13.246–N13.248, 

E123.689 

Bare + scrubland 30–40 Lithosol 

M1–M5 400–600 N13.233–N13.238, 

E123.698 

Abaca farms 15–25 Andosol 

L1–L5 50–200 N13.218–N13.226, 

E123.709 

Paddy rice fields 5–10 Alluvial 

loam 

 

3.2 Soil Sampling and In-Situ Measurements 

Soil sampling was executed with meticulous 

adherence to field quality control protocols to 

ensure data reliability and minimize 

cross-contamination. At each plot, a 10 × 10 

meter quadrat was established using a laser 

distance meter and compass bearings to ensure 

spatial accuracy. Within each quadrat, five 

sub-sampling points were arranged in a 

W-pattern to capture microtopographic and 

vegetation heterogeneity, a method widely 

adopted in soil field surveys for its spatial 

representativeness. 

Soil was sampled at the surface horizon (0–20 

cm) using a pre-cleaned stainless steel Dutch 

auger, chosen for its minimal reactivity with 

trace metals. Sampling depth was selected to 

capture the most dynamic zone of interaction 

between organic matter, root activity, and 

anthropogenic inputs such as fertilizers, 
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pesticides, or atmospheric deposition. 

To maintain analytical integrity: 

 Subsamples (~200 g each) were pooled to 

form 1 kg composite samples per plot, 

 Auger was rinsed with deionized water and 

wiped with 70% ethanol between sites, 

 Samples were immediately placed in 

double-lined acid-washed polyethylene 

bags and sealed airtight, 

 All bags were labeled with QR-coded 

waterproof tags linked to a central GIS 

database, 

 Samples were stored in insulated coolers 

with ice packs, maintaining field 

temperatures at 4 ± 1°C, and transported to 

the laboratory within 6 hours 

post-collection, following ISO 10381-6:2009 

sampling standards. 

In-situ physical and chemical parameters were 

also recorded: 

 Soil pH and Electrical Conductivity (EC) 

were measured using a Hanna HI98129 

multiparameter probe in a 1:2.5 

soil-to-distilled water suspension. 

Measurements were repeated three times 

per plot and averaged to reduce instrument 

drift. 

 Gravimetric moisture content was 

calculated by weighing fresh soil, drying at 

105°C for 24 hours, and reweighing. Results 

were expressed as a percentage of 

oven-dried mass. 

 Bulk density was determined using the core 

method, with a 100 cm³ stainless steel ring 

cylinder inserted into undisturbed soil. The 

volume of soil was dried and weighed to 

yield bulk density (g/cm³), an important 

variable for estimating total metal load per 

hectare. 

 Slope angle and aspect were measured with 

a Suunto PM-5/360 clinometer and 

magnetic compass. These parameters 

informed erosion risk modeling and helped 

interpret sediment accumulation 

tendencies. 

All field measurements were logged via a 

tablet-based data collection app (e.g., 

EpiCollect5), synced daily to a central cloud 

repository. Weather conditions, including 

ambient temperature, humidity, and recent 

rainfall history, were also noted, as these may 

influence metal mobility and surface chemistry 

at the time of sampling. 

3.3 Laboratory Analysis 

3.3.1 Sample Preparation 

In the lab, samples were: Air-dried for 5 days in 

a controlled humidity chamber, crushed using 

an agate mortar and pestle, sieved to <2 mm, 

and stored in airtight containers for chemical 

analysis. 

3.3.2 Metal Digestion and Quantification 

Wet digestion followed USEPA Method 3051A 

(microwave-assisted): 

 0.5 g of soil + 9 mL HNO₃ + 3 mL HCl. 

 Digested in a microwave reactor (CEM 

Mars 6) at 180°C. 

• Final extract diluted to 50 mL with 

ultrapure deionized water. 

Metal concentrations (Fe, Mn, Zn, Cu, Pb, Cr) 

were quantified via: 

 FAAS (PerkinElmer AAnalyst 400) for Fe, 

Mn, Zn. 

 Graphite Furnace AAS (GFAAS) for 

trace-level Pb, Cr, Cu. 

Quality Assurance: 

 Blanks, duplicates, and NIST SRM 2711a 

(Montana II Soil) as reference. 

 Recovery efficiency ranged between 

92%–106%. 

 Method detection limits (MDLs) for each 

metal were confirmed below 

environmental guideline thresholds. 

 

Figure 1. Schematic of Downslope Sampling 

Strategy Along Mayon’s Fluvial Gradient 
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3.4 Statistical and Geospatial Analysis 

To ensure rigorous interpretation of the 

observed metal concentration gradients across 

slope zones, a comprehensive statistical and 

spatial analysis workflow was applied. All 

statistical computations were performed using R 

version 4.3.1, with data wrangling and 

visualization facilitated through the dplyr, 

ggplot2, and vegan packages. Initial processing 

involved the generation of basic descriptive 

statistics—means, standard deviations, and 

coefficients of variation—for each metal within 

the upper, middle, and lower slope classes, 

which provided a foundational understanding 

of variability across the transect. 

Prior to hypothesis testing, all datasets 

underwent Shapiro-Wilk normality tests to 

determine the appropriate statistical framework. 

For variables meeting parametric assumptions, a 

one-way ANOVA was conducted to assess 

whether differences in metal concentrations 

across slope positions were statistically 

significant. In cases where data deviated from 

normality, the Kruskal-Wallis H-test, a 

non-parametric alternative, was employed. 

These tests were followed by Tukey’s HSD post 

hoc comparisons, enabling pairwise analysis of 

slope zones to identify which transitions (e.g., 

middle to lower slope) contributed most to the 

observed variance. 

To explore inter-element dynamics and potential 

co-contamination patterns, Pearson correlation 

matrices were constructed for all sampled 

metals and soil properties including pH, organic 

matter content (OM), and electrical conductivity 

(EC). These matrices not only revealed potential 

shared geochemical pathways among 

metals—such as the commonly correlated 

behavior of Zn and Cu—but also indicated how 

physicochemical soil conditions may influence 

mobility or retention. To further unravel 

underlying gradients and potential 

contamination sources, Principal Component 

Analysis (PCA) was performed. PCA results 

were particularly effective in differentiating 

between lithogenic (volcanic) sources of Fe and 

Mn, and more enriched, potentially 

anthropogenic profiles observed in Pb and Cr 

concentrations. 

Spatial patterns of metal distribution were 

visualized through geostatistical interpolation 

using QGIS 3.28. Interpolation was performed 

using both Inverse Distance Weighting (IDW) 

and ordinary kriging methods, enabling 

comparison of deterministic versus probabilistic 

surface estimations. These interpolated maps 

provided detailed spatial representations of 

metal concentration “hotspots” along the fluvial 

transects, particularly in depositional areas of 

the lower slope. Base layers including 30-meter 

SRTM elevation models, hydrological pathways, 

and land use classifications from NAMRIA were 

integrated to contextualize the geochemical 

landscape within its broader geomorphological 

and anthropogenic framework. 

Together, the combined use of univariate, 

multivariate, and spatial statistics allowed for a 

robust and multidimensional understanding of 

how heavy metals are distributed downslope in 

a lahar-prone volcanic system. These analyses 

were not only instrumental in confirming the 

presence of statistically significant gradients but 

also crucial for identifying ecological risk zones, 

informing both future research and land 

management strategies in volcanic floodplain 

systems. 

4. Results and Discussion 

4.1 Downslope Metal Gradient 

Quantitative assessment of heavy metal 

concentrations revealed a pronounced and 

statistically significant increasing gradient from 

the upper slope down to the lower floodplains 

of the Mayon fluvial system. This trend was 

consistent across all six monitored elements—Fe, 

Mn, Zn, Cu, Pb, and Cr—with concentration 

values nearly doubling or tripling in some cases, 

particularly for Zn and Fe (Table 2). The upper 

slope soils, composed primarily of fresh 

pyroclastic fragments and shallow lithosols, 

exhibited the lowest metal content due to 

continuous erosional loss and low organic 

retention. In contrast, the lower slopes, 

characterized by alluvial deposition and finer 

soil texture, recorded the highest concentrations, 

reflecting the cumulative effect of prolonged 

sedimentation and topographic trapping. 

 

Table 2. Mean Heavy Metal Concentrations 

(mg/kg) by Slope Position 

Slope 

Position 

Fe Mn Zn Cu Pb Cr 

Upper 

Slope 

4,215 220 33 18 4.2 5.3 

Middle 6,801 312 59 24 6.8 7.6 
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Slope 

Lower 

Slope 

9,452 438 82 33 10.1 10.9 

 

Statistical analysis through one-way ANOVA (p 

< 0.01) validated these differences across slope 

zones. Tukey’s HSD post hoc test further 

clarified that the sharpest increases occurred 

between the middle and lower 

slopes—coinciding with zones of active 

sediment deposition from laharic activity and 

seasonal runoff. These patterns align with 

established geomorphological models of 

volcanic slopes, where suspended metal-bearing 

particulates preferentially settle in low-energy 

depositional environments (Arguden & Rodolfo, 

1990). 

4.2 Metal-Specific Trends and Geochemical Behavior 

The spatial behavior of each heavy metal reflects 

a combination of lithological inheritance, soil 

physicochemical dynamics, and external inputs 

across the fluvial slope system. This section 

unpacks these distinct behaviors by linking 

observed field data with known biogeochemical 

pathways and sediment-metal interactions. 

Iron (Fe) was consistently the most abundant 

metal detected in all samples, increasing 

downslope from 4,215 mg/kg to 9,452 mg/kg. 

This trend strongly correlates with slope 

position (r² = 0.89), affirming its role as a 

conservative lithogenic indicator. Fe’s 

dominance can be traced to the oxidation of 

pyroxenes, olivine, and magnetite in Mayon’s 

basaltic-andesitic parent material. As Fe is 

largely immobile under aerobic conditions, its 

accumulation in lower slopes likely results from 

mechanical deposition rather than solution 

transport. However, in microzones of poor 

drainage—such as the seasonal backwaters in 

paddy fields—Fe(III) oxides may undergo 

reductive dissolution, releasing soluble Fe²⁺ and 

altering availability and plant uptake dynamics. 

Zinc (Zn) and Copper (Cu) showed near-parallel 

gradients, increasing significantly from upper to 

lower slopes. Their behavior is partially 

controlled by sorption to organic matter, 

sesquioxides, and clay minerals—particularly 

montmorillonite and allophane found in 

volcanic soils (Andosols). In the middle and 

lower slope soils, which were richer in organic 

carbon and colloidal clays, Zn and Cu likely 

formed stable organo-metallic complexes, which 

reduce leaching but maintain long-term 

bioavailability. This mechanism is especially 

relevant under the mildly acidic soil pH (5.2–6.0) 

observed in the lower transects, a range that 

favors Zn²⁺ solubility and Cu²⁺ chelation. 

Of particular concern were the behaviors of 

Lead (Pb) and Chromium (Cr). Despite having 

lower absolute concentrations than other metals, 

their enrichment ratios in the lower slope soils 

exceeded the threshold for moderate 

anthropogenic impact (EF > 2). Pb, which binds 

strongly to phosphate and organic matter, is 

typically immobile in soils; however, the 

presence of fine silts, irrigation residues, and 

historical pesticide use (notably lead arsenate in 

older farming systems) may explain localized 

peaks. Similarly, Cr exists primarily in two 

oxidation states: Cr(III), which is less mobile and 

typically found in soils, and Cr(VI), a more toxic 

form often associated with anthropogenic 

sources. Although Cr(VI) was not directly 

measured, the elevated Cr values in agricultural 

zones raise concerns, particularly where aerobic 

to anaerobic fluctuations could drive redox 

cycling and potential Cr mobilization. 

Manganese (Mn) mirrored Fe’s trend but 

displayed more scatter, attributable to its higher 

solubility under reducing conditions. Mn acts as 

a sensitive indicator of redox potential, and its 

elevation in floodplain soils implies recurring 

waterlogging and micro-anaerobic niches, which 

facilitate Mn²⁺ mobilization. These conditions 

are typical of paddy fields and seasonally 

inundated zones, where microbial reduction 

processes (e.g., dissimilatory Mn reduction) 

dominate. 

A broader pattern emerges when metals are 

grouped by environmental behavior: Fe and Mn 

act as geogenic indicators and are controlled by 

redox and sedimentation; Zn and Cu are 

semi-mobile, governed by organic complexation 

and colloidal transport; Pb and Cr are more 

likely to reflect legacy contamination and diffuse 

anthropogenic inputs, exacerbated by landscape 

trapping effects in depositional zones. 

These behaviors are consistent with findings 

from other active volcanic watersheds such as 

Mt. Pinatubo and Mt. Merapi, where metal 

enrichment is tied to topographic gradients, 

land use intensity, and post-eruptive soil 

evolution (Sabijon et al., 2025). 

In summary, the differential behavior of metals 

across slope positions reflects not only physical 
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transport through erosion and deposition, but 

also complex interactions among mineralogy, 

pH, redox conditions, and organic matter 

dynamics. Understanding these interactions is 

critical for predicting metal bioavailability, 

ecological risk, and long-term soil fertility in 

volcanic landscapes. 

4.3 Sediment Transport Dynamics and Slope 

Influence 

The downslope pattern of metal accumulation 

across the Mayon fluvial system is intimately 

governed by sediment dynamics shaped by 

topography, rainfall, and geomorphic context. 

The steep upper slopes of the volcano, 

composed of highly unconsolidated pyroclastic 

materials—such as ash, scoria, lapilli, and 

pumice—are particularly vulnerable to erosion. 

During high-intensity rainfall events, often 

associated with monsoons or tropical cyclones, 

surface runoff exceeds infiltration capacity, 

initiating sheetwash, rill erosion, and eventually 

mass-wasting flows. These processes mobilize 

not only coarse tephra but also metal-bearing silt 

and clay particles that are chemically active and 

prone to downstream transport. 

The nature of lahars—both hot (eruptive) and 

cold (rainfall-induced)—plays a decisive role in 

shaping the sediment-metal profile across the 

slope. As described by Arguden & Rodolfo 

(1990), hot lahars entrain pyroclastic flows 

immediately after eruption, often rich in fresh 

mineral phases with low weathering indices. In 

contrast, cold lahars rework previously 

deposited tephra and sediments, frequently 

remobilizing aged and partially weathered 

materials rich in secondary oxides, such as Fe- 

and Mn-oxides that have already adsorbed 

heavy metals. 

A key determinant in this system is slope 

gradient. Regression analysis showed 

statistically significant inverse correlations 

between slope angle and total concentrations of 

Zn, Cu, and Fe (p < 0.01). These findings support 

a gravity-driven transport model, wherein steep 

upper slopes act as sediment sources while 

lower slopes and valley bottoms act as 

accumulation zones. Hydraulic sorting in the 

fluvial network leads to the progressive 

deceleration of flow velocity downslope, causing 

selective deposition of finer sediments with high 

surface area-to-volume ratios—a favored 

condition for metal adsorption. 

Sediment grain size analysis conducted on 

representative samples confirmed that particles 

<63 µm (silt and clay fraction) comprised over 

70% of material in lower slope soils, compared 

to only 25% in upper slope soils. These fine 

particles not only travel further but also exhibit 

higher cation exchange capacity (CEC) and 

greater potential to bind metals through 

outer-sphere and inner-sphere complexation. 

Slope hydrology is modulated by vegetative 

cover and soil structure. NDVI (Normalized 

Difference Vegetation Index) analysis from 

Sentinel-2 imagery revealed that the upper 

slopes had vegetation cover below 25%, 

primarily pioneer species and barren rock, while 

mid- and lower slopes ranged from 45–70% 

cover, dominated by agricultural crops and 

scattered trees. This vegetation plays a dual role: 

it reduces surface runoff velocity through 

increased canopy interception and root cohesion, 

and it also acts as a physical barrier, allowing 

suspended particulates to settle out before 

reaching waterways. However, over time, even 

in vegetated zones, fine particle infiltration may 

lead to gradual but persistent metal enrichment, 

especially under irrigation regimes that promote 

vertical percolation and translocation. 

The episodic nature of Mayon’s eruptive history 

also complicates sediment-metal dynamics. Each 

eruption deposits new stratified tephra, 

resetting soil development and metal 

mobilization potential. Field core observations 

suggest at least three distinct sedimentary layers 

in middle and lower slopes, indicating 

multi-generational lahar influence, each 

contributing variably to current metal content 

depending on time since deposition, degree of 

weathering, and land use following the event. 

When compared to other active volcanic regions 

in Southeast Asia, such as Mt. Merapi in 

Indonesia or Taal in southern Luzon, similar 

transport patterns emerge. However, the 

frequency and intensity of lahar events on 

Mayon, combined with its well-developed 

fluvial fan systems, appear to create a 

particularly efficient mechanism for metal 

redistribution over relatively short distances and 

timescales. 

Sediment transport on the Mayon slopes is not 

merely a function of gravity and water—it is a 

dynamic, multi-scalar process influenced by 

topography, hydrology, soil texture, vegetation 

structure, eruption cycles, and human land use. 

Understanding this complexity is essential for 
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predicting future metal deposition zones, 

evaluating cumulative contamination, and 

designing effective land management responses 

in lahar-prone volcanic watersheds. 

4.4 Visualizing Metal Trends 

 

Figure 2. Zn and Cu Concentration Across Slope Positions 

 

This upward trend of Zn) and Cu across slope 

zones supports the sediment enrichment 

hypothesis, especially in flood-prone 

agricultural land. 

4.5 Pollution Assessment: Geoaccumulation and Risk 

Indices 

To quantify contamination severity and 

anthropogenic influence, pollution indices were 

calculated based on established frameworks. 

The Geoaccumulation Index (I_geo) was used to 

classify pollution levels relative to natural 

background concentrations of volcanic origin, 

applying the formula: 

         (1) 

Results indicated that Pb and Cr in lower slopes 

fell into the “moderately polluted” category 

(I_geo = 1–2), suggesting historical or 

cumulative enrichment beyond natural baselines. 

Fe and Zn, though elevated, remained in the 

“unpolluted to moderately polluted” category, 

reflecting their dual origin from both parent 

material and sediment redistribution. 

Complementary analysis using the 

Contamination Factor (CF) showed: 

 Moderate contamination (CF 1–3) for Zn 

and Cu, reinforcing their mobility under 

agricultural settings; 

 Low contamination (CF < 1) for Mn and Fe, 

indicating largely lithogenic origin with 

limited bioavailability risk. 

These indices are vital in separating natural 

geogenic signals from human-induced 

enrichment, especially in a landscape that 

combines natural hazard vulnerability with 

intensive agricultural use. 

4.6 Environmental and Agricultural Implications 

The results of this study carry significant 

implications for both environmental 

sustainability and agricultural resilience in 

communities surrounding the Mayon fluvial 

system. The accumulation of heavy 

metals—particularly zinc (Zn), lead (Pb), and 

chromium (Cr)—in lower slope floodplain soils 

introduces an array of risks across ecological, 

agricultural, and human health domains. 

From an agricultural perspective, the most 

immediate concern is the potential for metal 

uptake by staple crops, especially rice (Oryza 

sativa), which dominates the cultivated 

landscape in lower slope zones. Numerous 

agronomic studies have documented how rice 

grown in metal-contaminated soils tends to 

accumulate Zn, Cu, and Pb in root tissues, some 

of which are translocated to edible grains 

depending on cultivar, pH, and water 

management practices. Given the slightly acidic 

conditions (mean pH 5.3) and elevated organic 

matter observed in these soils, the bioavailability 

of metals is significantly enhanced, increasing 

the likelihood of plant uptake through cation 

exchange and root absorption pathways. This 

not only affects yield quality but introduces food 

chain contamination, posing a long-term dietary 
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exposure risk to local populations reliant on 

subsistence agriculture. 

The public health dimension is particularly 

pressing. Chronic ingestion of Pb, even in trace 

quantities, is linked to neurotoxicity, especially 

in children and pregnant women. Elevated Cr 

levels—if present in the toxic hexavalent form 

(Cr⁶⁺)—are known to be carcinogenic and 

genotoxic. These contaminants may also leach 

into shallow groundwater aquifers or surface 

irrigation canals, especially during monsoonal 

flood pulses, thereby impacting drinking water 

quality for downstream communities. Without 

adequate water treatment infrastructure, such 

contamination pathways may go undetected yet 

persist over decades. 

In addition to human exposure, these metal 

loads can undermine soil biological health, 

inhibiting enzymatic activity, microbial 

respiration, and nutrient cycling. The result is a 

progressive decline in soil fertility and ecological 

function, reducing the capacity of these systems 

to support productive agriculture over the long 

term. This is particularly concerning given the 

region’s high population density and reliance on 

land-based livelihoods. 

Moreover, under projected climate change 

scenarios, the problem could intensify. More 

frequent and extreme rainfall events will likely 

increase erosion, runoff, and lahar reactivation, 

remobilizing legacy contaminants buried in 

older sediment layers. Conversely, prolonged 

dry spells and land desiccation could shift redox 

balances, altering metal solubility and 

promoting oxidative release of bound metals, 

particularly Fe, Mn, and Cr. 

To address these emerging risks, a multi-level 

mitigation approach is essential. At the field 

scale, soil amendments—such as lime 

application, biochar incorporation, and organic 

composting—can buffer pH and reduce metal 

bioavailability. At the landscape scale, zoning 

regulations should discourage food crop 

cultivation in known flood-receiving zones 

unless remediation is undertaken. In parallel, 

phytoremediation using hyperaccumulator 

plants, such as Vetiveria zizanioides or Brassica 

juncea, could be deployed to extract excess 

metals gradually from the soil matrix. 

At the governance level, institutional 

coordination among local governments, 

agricultural agencies, and environmental 

monitoring bodies is critical. Establishing 

community-based monitoring networks with 

routine testing of soils, water, and crop tissues 

could empower farmers with early warning 

tools and improve adaptive decision-making. 

In sum, the environmental and agricultural 

implications of heavy metal gradients along 

Mayon’s fluvial system are multifaceted and 

deeply interwoven with socio-economic 

resilience. Proactive management—grounded in 

science and local participation—will be essential 

to safeguard food systems, protect human health, 

and sustain the productivity of these fertile but 

fragile volcanic landscapes. 

5. Conclusion 

This study demonstrates a pronounced 

downslope gradient in heavy metal 

concentrations in soils along the Mayon fluvial 

system, with elements such as Fe, Zn, Cu, Pb, 

and Cr progressively accumulating from the 

volcano’s upper slopes to its floodplain termini. 

These spatial patterns are governed by a 

complex interplay of laharic transport, erosional 

dynamics, and sediment deposition, all of which 

are intensified by the region’s steep topography 

and high rainfall regime. The findings confirm 

that lower slope areas—particularly those used 

for intensive agriculture—act as sinks for 

metal-enriched sediments, potentially 

compromising soil quality and food safety. 

Beyond the empirical data, this study highlights 

the urgent need to integrate geochemical 

monitoring with land-use planning in volcanic 

landscapes. With Mayon’s frequent eruptions 

and climate-driven hydrological extremes, the 

redistribution of toxic elements is likely to 

intensify in the future. Effective risk mitigation 

will require not only continuous environmental 

surveillance but also remediation strategies such 

as liming, organic matter management, or 

metal-tolerant crop selection. 

These results contribute to a broader 

understanding of volcano-soil-human system 

linkages in tropical environments. They 

underscore the importance of framing volcanic 

soil management within both agroecological 

resilience and public health protection 

frameworks to ensure long-term sustainability 

in hazard-prone landscapes. 
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Abstract 

Constant changes in nature are carried out under the influence of living information from the Creator. 

Each person reflects and perceives the real world along an individual semantic information trajectory. 

The informational semantic paths of man in the noosphere represent complex networks of interactions 

that contribute to the development of knowledge, cultures and technologies necessary for a 

sustainable future. The noosphere is a natural information space that reflects the outside world. It 

serves as a source of information and knowledge for humans. It exists independently of humans and 

contains descriptions of the surrounding world. However, the knowledge of this space is carried out 

on the basis of the tools that humans possess. As science and technology develop, the tools are 

improved. This expands the natural information space as a source of knowledge of the surrounding 

world and communications. 

Keywords: noospheric technology, information space, interpersonal communication, artificial 

intelligence 

 

 

 

1. Introduction to the Problem 

The space is reflection of the surrounding world. 

The information field is embedded in the 

information space. The field contains certain 

quantitative and qualitative characteristics of the 

space. The information field connects the 

material dynamic world in all its manifestations 

with the spiritual field. The information 

environment is embedded in the information 

field and in the information space, but is a 

smaller object in scale. The information 

environment is a part of the information field for 

which information interactions influencing the 

object of study are essential. The semantic 

environment of the object of study is an even 

smaller object in scale, which is embedded in the 

information environment and is closely related 

to the object of study. The semantic environment 

makes it possible to develop algorithms for 

searching for the area of truth. Semantic analysis 

of objects of the information field by the human 

mind is performed using their semantic 

environment. 

The human mind was functionally created by 

the providence of the Lord in the image and 

likeness of His Wisdom. The Universe was 

created and develops by Wisdom. The mental 

field of the mind of a perfect godlike man, 
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gradually expanding in the knowledge of space, 

will be able to embrace the Universe in time and 

space (Evgeny Bryndin, 2022). The mind, 

concentrating on various entities of the 

surrounding world, interacts with them on the 

basis of wave information, exploring them. To 

explore the surrounding world is an innate 

ability of every person. 

Spiritually kindred souls have a strong semantic 

informational connection through the 

gravitational waves of the mental fields of the 

etheric bodies. To implement the connection, 

there must be confidence in the implementation 

of the expected internal speech remote semantic 

information contact. Confident in the contact, 

the souls of the recipients tune their mental 

fields with internal speech to communicate with 

semantic informational gravitational waves. 

2. Noospheric Communication Information 

Intelligent Technology 

All information in the Universe is contained in 

one place. This is an information field that is 

outside of time and space, that is, everywhere. It 

contains all history, all knowledge. It exists and 

connects all beings and all events occurring in 

the Universe. This information field is at the 

highest frequency, so it is very difficult to 

connect to it from our spiritual level.  

It is necessary to move the mind to contact with 

the soul and its development in the spiritual 

realm. The spiritual personality automatically 

moves to a new qualitative level and transfers its 

soul from the passive category to the active one, 

which can request information from the 

information field and use the noosphere. A 

person develops the ability to exchange 

information using internal speech at the level of 

gravitational waves. 

Thoughts possessing spiritual essence initiate 

inner speech in the mental field of the mind 

using the technology of etheric resonance with 

the emission of corresponding semantic 

gravitational waves. Gravitational waves of 

inner speech of the mental field of the righteous 

mind of a spiritually bright person, directed at 

another spiritually bright person in his likeness, 

are perceived by his mental field of the mind, 

according to which the bright spirit initiates the 

corresponding semantic inner speech (Evgeny 

Bryndin, 2023). Semantic information enters the 

brain in the form of clear insights and the 

resulting semantic understanding. Energy waves 

carry information images.  

Researchers have recorded many cases of 

kinship, creative and spiritual rapprochement of 

people in different parts of the world, when 

there were no modern means of communication. 

Ethereal and gravitational waves were natural 

means of communication. Ethereal waves united 

creative people working on the same 

information field of the Universe. Close relatives 

are connected with the help of a genealogical 

energy field. 

Man has an etheric body which activates him 

and acts as a binding force, maintaining his 

existence. The etheric body is a component part 

of the planetary etheric body, forming its most 

refined and most developed aspect. Everything 

— every form, every organism in every form, all 

aspects of manifest life in every kingdom of 

nature — everything is closely interconnected 

through the planetary etheric body (of which all 

etheric bodies are component parts), which 

underlies everything that is. The person you are 

talking to — all together are included in the 

gigantic circulating life of the planet, flowing in, 

out and out of every aspect of nature.  

The etheric shell of each person is directed to the 

Spiritual World. Today it is important to 

emphasize the spiritual nature of man, for the 

physical nature itself is the result — the 

consequence of spiritual activity. Spiritual 

people activate the etheric energy that embraces 

the entire Universe and participates in all 

processes. For example, the prayer of the 

Jerusalem Patriarch to God on Easter in the 

Cathedral of Christ the Savior activates etheric 

energy in the form of sparkling ether (the 

descent of non-burning fire). 

Gravitational waves semantically naturally 

connect spiritually perfect people through 

internal speech communication. The Holy Spirit 

spoke through the prophets. Communication 

through internal speech can be carried out at the 

level of gravitational waves of the speech range. 

The energy of the ether can have a resonant 

character, then a vortex wave can arise and 

speech gravitational waves enter into resonance 

with the noosphere. With good sensitivity of the 

etheric body, people feel the gravitational flows 

of the energy of the noosphere.  

From the noosphere, speech gravitational waves 

are perceived by the recipient with sufficient 

sensitivity through intelligent bioinformation 

systems and activate the corresponding 

meanings in his neuro structures of internal 
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speech. Inner speech is formed by quanta and 

has a conveyor form. Each portion of internal 

continuous speech by the subject generates 

speech gravitational waves by the source. 

The omnipresence of the ether makes interaction 

between minds possible. The omnipresence of 

the ether has a semantic basis in the Universe. 

Gravitational energy emanating from some 

mind circulates through the human etheric body. 

The ability to communicate is inherent in the 

nature of the substance itself. It is potentially 

inherent in the ether. Due to the interaction 

between minds, a gravitational wave is born, 

which can be registered by the brain. The 

sensitivity of the brain gives rise to the quality of 

coherence, uniting the transmitter and receiver 

and ensuring the coherence of the entire 

dialogue and messages that are transmitted. The 

sensitivity of the cognitive speech etheric 

substance increases on the spiritual level.  

Gravitational cognitive speech flow is a 

consequence of the dynamics of the ether. The 

etheric environment of standing waves of 

internal speech generates a gravitational speech 

flow. Cognitive etheric communication has a 

resonant nature. Resonant communication is a 

special form of interpersonal communication, 

which is based on cognitive quantum 

information. Resonant communication is 

characterized by both integral characteristics 

inherent to communication in general: addresser, 

addressee, message, pragmatic intention, impact 

on the recipient of information, and a number of 

specific features. Resonant communication can 

be both verbal and non-verbal. 

3. Spiritual, Mental, Psychic and Physical 

Properties of Recipients for Noospheric 

Dialogue 

Recipients for noospheric dialogue have the 

following spiritual, mental, psychic and physical 

properties. 

1) Spiritual properties:  

- high spiritual awareness,  

- the ability to feel and perceive information at 

the level of clairaudience,  

- the ability to feel the emotions and states of 

other people in establishing deep connections,  

- the desire to improve the world. 

2) Mental properties:  

- developed cognitive abilities,  

- high ability to analyze, think critically and 

solve complex problems,  

- ability to generate original ideas and 

approaches to problems,  

- openness to new ideas,  

- willingness to perceive and integrate new 

concepts and approaches.  

3) Mental properties:  

- ability to achieve deep states of peace and 

understanding,  

- stress resistance,  

- ability to cope with difficulties and maintain 

mental balance in difficult situations.  

- managing your emotions, motives and 

behavior,  

- ability to communicate and interact with other 

people, creating harmonious relationships, 

 - ability to adapt to changes and show 

creativity in non-standard situations.  

4) Physical properties:  

- good physical condition in harmony of body 

and spirit,  

- energy sensitivity,  

- the ability to sense and work with energy flows 

that are associated with the environment and 

other people,  

- synchronization with natural cycles,  

- the ability to sense and adapt to the rhythms of 

nature. 

When recipients merge spiritually, they create 

meaningful gravitational waves with internal 

speech in the mental field of the etheric body, 

and with clairvoyance carry out their 

informational teleportation into the mental field 

of the recipient of the interlocutor, in which the 

waves activate meaningful internal speech 

(Evgeny Bryndin, 2023; Jinzhao Wang & Shunyu 

Yao, 2024; Dongning Liu, Zhanping Jin, 

Jingyuan Liu & Wei Zhang, 2024; Zsolt 

Gyongyosi, Timothy J. Hollowood & S. Prem 

Kumar, 2024; Seyed Amir hossein Mehrinezhad 

Chobari, Hossein Aghababa & Mohammadreza 

Kolahdouz, 2025; Kornikar Sen, Adithi Ajith, 

Saronath Halder & Ujjwal Sen, 2025; Yingqi Wu, 

Yuanfeng Jin, Gang Lyu & Yang Liu, 2025; 

Akshai T. Krishnan, Kanad Sengupta, S. P. 

Dinesh & C. M. Chandrashekar, 2025). 

Gravitational waves of the speech frequency 

range are recorded using the laser 

Interferometer Space Antenna detector. In 
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2025-2035, Russia will develop teleportation and 

use natural phenomena to transmit information. 

4. Functions of AI in Noospheric 

Communication 

Autonomous AI systems are used in noospheric 

information communication (Evgeny Bryndin, 

2024a; Evgeny Bryndin, 2024b; Evgeny Bryndin, 

2025a; Bryndin E. G., 2025; Evgeny Bryndin, 

2025b). Autonomous AI systems implement 

functions to support a continuous session of 

recipient dialogue:  

- ensure the beginning and end of an 

information gravitational session,  

- process and save session information,  

- issue session information at the request of the 

recipient of the AI system owner,  

- process session failures and report the reason,  

- provide linguistic assistance to recipients,  

- implement ethical control of the dialogue,  

- determine the wave gravitational, semantic, 

grammatical, and ethical level of the dialogue,  

- ensure the security of the session and 

information. 

Autonomous AI systems significantly increase 

the level of information security in 

communications.  

1) Message encryption.  

AI can automatically encrypt information using 

modern cryptographic methods, making it 

inaccessible to outsiders.  

2) Threat analysis.  

AI can analyze communication channels for 

suspicious activity or threats and warn 

recipients of possible risks.  

3) Automatic ethical filtering.  

AI effectively filters unethical information by 

replacing it with synonyms.  

4) Access control.  

AI-based systems manage access rights to 

information, ensuring that only authorized users 

can see the information.  

5) Recipient training.  

AI can provide recipients with 

recommendations on safe behavior in a 

noospheric session, teaching them to recognize 

possible threats and protect their personal 

information.  

6) Sentiment analysis.  

AI can analyze the tone of a conversation to 

identify potential conflicts or misunderstandings, 

allowing timely intervention and preventing 

problems from escalating.  

7) Automated assistants.  

AI systems help recipients securely exchange 

information, manage schedules and reminders, 

while maintaining the confidentiality of the 

conversation.  

Autonomous AI technologies significantly 

improve the security of communication in both 

personal and professional spheres. 

5. Conclusion 

A person always lives in the present. The 

present is constantly changing. A person 

perceives changes in the present by their 

location in space. Changes in the present are 

recorded in memory in the form of a 

holographic path. Nature, in turn, records the 

spatial paths of all people.  

Human cognitive activity is recorded in memory 

in the form of a semantic path. Interpersonal 

dialogues are recorded in memory by the 

conjugation of semantic paths. 

Humanity has adopted many communication 

tools for weakly protected interpersonal 

dialogues. The transition to cognitive 

communication based on noospheric intellectual 

technology will save resources on digital means 

of communication, and will also help solve 

problems of safe informational interpersonal 

interaction through the noosphere. The 

transition to natural meaningful interpersonal 

communication will solve many environmental 

problems and eliminate the pollution of space 

with informational noise. 
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Abstract 

This paper explores the current applications, challenges, and future development trends of intelligent 

production technology in the silicone rubber processing industry. By analyzing the practical 

applications of intelligent production technology in silicone rubber processing, such as the application 

status of automated production lines and intelligent inspection systems, this paper discusses the 

technical difficulties encountered in implementing intelligent production, such as equipment 

compatibility and data integration issues. It also analyzes how intelligent production can improve 

production efficiency, product quality, and market competitiveness in the silicone rubber industry and 

proposes strategies and suggestions for promoting intelligent production in this field. 

Keywords: intelligent production, silicone rubber processing, automation, Industry 4.0, Internet of 

Things (IoT), big data analytics, Artificial Intelligence (AI), machine learning, predictive maintenance, 

quality control, production efficiency, market competitiveness, technological innovation, equipment 

compatibility, data integration, digital transformation, intelligent manufacturing systems, smart 

factory, production optimization, enterprise competitiveness enhancement, sustainable development 

 

 

 

1. Introduction 

Intelligent production, as the core of Industry 

4.0, optimizes and controls the production 

process through highly automated, 

informatized, and intelligent means, 

significantly improving production efficiency, 

product quality, and corporate competitiveness. 

Against the backdrop of intensified global 

manufacturing competition, the importance of 

intelligent production is increasingly prominent, 

becoming a key factor for corporate 

transformation and upgrading. 

The global trend of Industry 4.0 is driving the 

digital transformation of the manufacturing 

industry, emphasizing the interconnection and 

intelligent management of equipment through 

the Internet of Things (IoT), big data, and cloud 

computing technologies. For the silicone rubber 

industry, this trend means that companies need 

to introduce more intelligent technologies to 

meet the market’s demand for high-quality, 

customized products, optimize production 

planning and resource allocation, and enhance 

market responsiveness. For example, by 

introducing automated production lines and 

intelligent inspection systems, companies can 

achieve automation and intelligence in the 
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production process, reducing manual 

intervention and improving production 

efficiency and product quality. 

Despite the numerous opportunities brought by 

intelligent production, its application in the 

silicone rubber industry also faces challenges, 

such as equipment compatibility, data 

integration, and the demand for professional 

talent. For instance, many traditional production 

equipment may not be seamlessly integrated 

with new intelligent systems, requiring 

technological transformation or replacement. 

In summary, the application of intelligent 

production in the silicone rubber industry has 

significant strategic importance. It can not only 

help companies improve production efficiency, 

product quality, and market competitiveness but 

also promote technological progress and 

sustainable development in the entire industry. 

Although there are some technical and 

managerial challenges, with the continuous 

advancement of technology and a deeper 

understanding of intelligent production by 

companies, intelligent production will 

undoubtedly play an increasingly important role 

in the silicone rubber industry. 

2. Applications of Intelligent Production in 

Silicone Rubber Processing 

2.1 Current Status of Intelligent Production 

Technology Application 

The application of intelligent production 

technology in the silicone rubber processing 

industry is gradually deepening and becoming a 

key force in driving industry development. With 

the advancement of Industry 4.0, more and more 

companies are beginning to introduce 

technologies such as automated production 

lines, intelligent inspection systems, the Internet 

of Things (IoT), big data analytics, artificial 

intelligence (AI), and machine learning to 

improve production efficiency, product quality, 

and market competitiveness. (Kong, H. J., & Lee, 

S. H., 2023) 

2.2 Application of Automated Production Lines in 

Silicone Rubber Processing 

The application of automated production lines 

in silicone rubber processing has become an 

inevitable trend for industry development. 

Traditional silicone rubber processing relies 

heavily on manual operations, which are not 

only inefficient but also fail to ensure consistent 

product quality. Automated production lines 

integrate advanced robotic technology, 

automated conveying systems, and automated 

control systems to achieve full automation from 

raw material feeding to finished product 

packaging. For example, some companies have 

adopted automated mixing systems that can 

precisely control the proportion of raw materials 

and mixing time, ensuring the stability of 

product quality. Automated forming equipment, 

through precise temperature and pressure 

control, improves forming efficiency and 

product pass rate. 

2.3 Implementation and Advantages of Intelligent 

Inspection Systems 

Intelligent inspection systems are an important 

part of intelligent production. By introducing 

advanced sensor technology, image recognition 

technology, and data analysis algorithms, they 

achieve real-time monitoring and automatic 

inspection of the production process and 

product quality. In silicone rubber processing, 

intelligent inspection systems can monitor in 

real-time the quality of raw materials, 

temperature and pressure parameters during 

the production process, and the dimensions and 

appearance defects of products. For example, 

high-precision vision inspection systems can 

automatically detect surface defects of silicone 

rubber products, such as cracks, bubbles, and 

color inconsistencies, ensuring the appearance 

quality of products. 

2.4 Case Analysis of Companies Successfully 

Integrating Intelligent Technologies 

Many leading silicone rubber processing 

companies have successfully integrated 

intelligent technologies and achieved significant 

economic and social benefits. For example, 

Germany’s Wacker Chemie has achieved 

comprehensive intelligent production through 

the introduction of automated production lines 

and intelligent inspection systems. The company 

uses advanced robotic technology for raw 

material handling and forming operations in 

silicone rubber production, significantly 

improving production efficiency. At the same 

time, through intelligent inspection systems, it 

achieves real-time monitoring of product 

quality, ensuring high quality and consistency of 

products. The success of Wacker Chemie 

demonstrates that intelligent technology can not 

only improve production efficiency but also 

enhance corporate market competitiveness. 

In China, Shenzhen Xiongyu Rubber and 
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Hardware Products Co., Ltd. (hereinafter 

referred to as “Xiongyu Company”) has also 

achieved significant results through intelligent 

production technology. Xiongyu Company has 

achieved automation and intelligence in the 

production process by introducing automated 

production lines and intelligent inspection 

systems. The company uses advanced robotic 

technology for the forming and packaging of 

silicone rubber products, significantly 

improving production efficiency. 

3. Technical Challenges Faced by Intelligent 

Production 

3.1 Equipment Compatibility Issues 

The application of intelligent production in the 

silicone rubber processing industry faces 

significant challenges in equipment 

compatibility. Many silicone rubber processing 

companies own production equipment from 

different eras and brands, which have significant 

differences in technical standards, 

communication protocols, and data formats. For 

example, some old equipment may only support 

the RS232 interface, while new intelligent 

systems generally use the Ethernet interface, 

resulting in communication barriers between 

equipment. In addition, the data formats of 

different equipment are also inconsistent, such 

as CSV, JSON, and XML, further increasing the 

complexity of integration. (Patel, A., & Kumar, 

R., 2022) 

 

Table 1. Examples of Equipment Compatibility Issues 

Equipment Type Brand Year Communication Interface Data Format 

Mixer Buss AG 2005 RS232 CSV 

Molding Machine Buss AG 2010 Ethernet JSON 

Inspection Equipment Mahr 2015 USB XML 

 

The diversity and complexity of these 

equipment make it necessary for companies to 

solve compatibility issues between equipment 

when implementing intelligent production. For 

example, the mixer from Buss AG uses an RS232 

interface, while the new intelligent system may 

only support the Ethernet interface, requiring 

interface conversion or equipment upgrades. 

3.2 Integration Challenges of New Intelligent 

Systems with Existing Machinery 

Newly introduced intelligent systems, such as 

automated production lines, intelligent 

inspection systems, and IoT devices, need to be 

seamlessly integrated with existing machinery. 

However, due to inconsistent technical 

standards and communication protocols, this 

integration often faces many technical 

difficulties. 

• Technical Standard Differences: New and 

old equipment may follow different 

technical standards, resulting in 

inconsistent data formats and 

communication protocols. 

• Equipment Aging Issues: Old equipment 

may not support new intelligent functions 

and may require technical upgrades or 

replacements. 

• System Integration Complexity: 

Integration between different equipment 

needs to address data synchronization, 

real-time monitoring, and remote control 

issues. 

3.3 Solutions for Seamless Integration and 

Interoperability 

To solve equipment compatibility and 

integration issues, companies can adopt the 

following strategies: 

• Standardized Communication Protocols: 

Adopting universal communication 

protocols, such as OPC UA (Open Platform 

Communications Unified Architecture), 

ensures seamless data transmission 

between different equipment. OPC UA is a 

cross-platform industrial communication 

protocol that supports various data types 

and equipment, effectively solving 

equipment compatibility issues. 

◼ Case: Germany’s Wacker Chemie 

successfully achieved data interaction 

between equipment of different brands 

and eras by adopting the OPC UA 

protocol, significantly improving 

production efficiency and equipment 

utilization. 
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• Equipment Upgrades and 

Refurbishments: Upgrading old 

equipment by installing modern 

communication interfaces and data 

acquisition modules. For example, 

installing Ethernet interfaces and data 

conversion modules on old mixers to 

enable data interaction with new intelligent 

systems. 

◼ Case: Shenzhen Xiongyu Rubber and 

Hardware Products Co., Ltd. 

successfully upgraded its equipment 

to intelligent levels by installing 

Ethernet interfaces and data 

conversion modules on old equipment, 

improving production efficiency and 

product quality. 

• Middleware and Data Conversion 

Platforms: Using middleware and data 

conversion platforms to standardize and 

convert data formats from different 

equipment. For example, using industrial 

IoT platforms (such as Siemens 

MindSphere or GE Predix) to standardize 

data from different equipment and achieve 

interoperability. 

◼ Case: BMW Manufacturing Company 

successfully achieved coordinated 

work between equipment by adopting 

the Siemens MindSphere platform, 

significantly improving production 

efficiency and equipment utilization. 

• Cloud Platform Integration: Uploading 

equipment data to the cloud platform for 

data processing and analysis. Cloud 

platforms can provide powerful data 

processing capabilities and flexible 

integration solutions, helping companies 

achieve seamless integration between 

equipment. For example, through Alibaba 

Cloud IoT platform, companies can 

centrally manage and analyze data from 

different equipment, achieving coordinated 

work between equipment. 

◼ Case: Foxconn Technology Group 

successfully achieved coordinated 

work between equipment by adopting 

the Alibaba Cloud IoT platform, 

significantly improving production 

efficiency and equipment utilization. 

 

Table 2. Comparison of Equipment Integration Solutions 

Solution Advantages Disadvantages Applicable Scenarios 

Standardized 

Communication 

Protocols 

High compatibility, easy 

to expand 

Requires equipment 

support 

New construction or 

large-scale upgrade 

projects 

Equipment Upgrades 

and Refurbishments 

Enhances equipment 

performance, extends 

service life 

High cost, complex 

technology 

Old equipment 

refurbishment projects 

Middleware and Data 

Conversion Platforms 

Flexible, suitable for 

various equipment 

Requires 

professional 

technicians 

Complex equipment 

integration projects 

Cloud Platform 

Integration 

Powerful data processing 

capabilities, easy to 

manage 

Requires stable 

network connection 

Large enterprises or 

group projects 

 

By adopting the above solutions, companies can 

effectively solve equipment compatibility and 

integration issues, achieving seamless 

integration and interoperability of intelligent 

production systems. This not only improves 

production efficiency and product quality but 

also brings significant economic benefits to 

companies. 

4. Challenges Faced by Intelligent Production 

in Silicone Rubber Processing 

4.1 Technical Challenges 

4.1.1 Technical Integration and Compatibility 

Issues 

Intelligent production involves the integration of 

multiple advanced technologies, such as the 

Industrial Internet of Things (IIoT), big data 

analytics, and automated equipment. However, 

integrating these technologies is not easy. For 
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example, the Industrial Internet of Things 

requires seamless Integrate with automated 

equipment to achieve intelligent monitoring and 

optimization of the production process. In 

practice, different brands and models of 

automated equipment often use different 

communication protocols, making data 

transmission and equipment coordination 

extremely complex. 

According to an industry survey, approximately 

75% of companies encounter communication 

protocol inconsistencies during technical 

integration, resulting in equipment being unable 

to communicate effectively. For example, a 

silicone rubber processing company found that 

the communication protocol of its automated 

injection molding machine was incompatible 

with the IoT platform when introducing an 

Industrial Internet of Things system. This led to 

the inability to transmit production data in 

real-time and a 20% decrease in production 

efficiency. 

 

Table 3. Frequency and Impact of Technical Integration Issues 

Issue Type Occurrence 

Frequency 

Impact 

Communication Protocol 

Inconsistency 

75% 20% reduction in production efficiency 

Data Format Mismatch 60% 30% increase in data analysis error rate 

System Compatibility Issues 50% 40% increase in equipment coordination 

failure rate 

 

Technical integration failures not only lead to 

production interruptions but can also cause 

quality issues. When equipment coordination 

fails, the various stages of the production 

process cannot be smoothly connected, leading 

to increased product defect rates. For example, 

during the molding process of silicone rubber 

products, if there is a lack of effective data 

interaction between the automated molding 

equipment and the upstream mixing equipment, 

it may result in unreasonable settings for 

molding temperature, pressure, and other 

parameters, thereby affecting the performance 

and quality of the products. 

4.1.2 Data Security and Privacy Protection 

In the process of intelligent production, silicone 

rubber processing companies need to handle a 

large amount of production data, including 

equipment operation data, raw material 

information, product quality data, and customer 

order information. These data not only involve 

the company’s core trade secrets but may also 

contain customer privacy information. Once 

data is leaked, it can not only damage the 

company’s commercial interests but also lead to 

legal disputes and customer trust crises. 

According to industry reports, approximately 

80% of companies face data security risks during 

intelligent production. The potential losses from 

data leakage include: (Kong, H. J., & Lee, S. H., 

2023) 

 

Table 4. Data Security Risks and Potential Losses 

Risk Type Probability of Occurrence Potential Loss 

Data Breach 30% Average loss of approximately 5 million yuan 

Cyber-attacks 25% Average loss of approximately 3 million yuan 

Internal Misoperations 20% Average loss of approximately 2 million yuan 

 

The importance of data security protection 

measures is self-evident, but their 

implementation is challenging. Companies need 

to invest a large amount of funds in 

cybersecurity equipment, data encryption 

technology, and access control systems. For 

example, companies need to deploy firewalls, 

intrusion detection systems, and other 

cybersecurity equipment to prevent external 

hacker attacks. At the same time, data needs to 



Journal of Progress in Engineering and Physical Science 

21 
 

be encrypted during storage and transmission to 

ensure its security at all stages. However, the 

implementation of these measures requires 

professional technical personnel and a sound 

management process, which is a significant 

challenge for many silicone rubber processing 

companies. 

4.2 Management Challenges 

4.2.1 Production Process Reengineering and 

Organizational Change 

Intelligent production poses new requirements 

for the production processes and organizational 

structure of silicone rubber processing 

companies. Traditional production processes are 

often linear and fixed, while intelligent 

production requires a more flexible and efficient 

modular production model. For example, in 

traditional silicone rubber product 

manufacturing, each stage from raw material 

procurement to product molding has fixed 

positions and operating procedures. Intelligent 

production, through automated equipment and 

the Industrial Internet of Things, achieves 

automation and intelligent monitoring of the 

production process, making the production 

process more flexible and efficient. 

According to an industry survey, approximately 

65% of companies encounter resistance during 

the reengineering of production processes, 

mainly manifested as employee resistance to 

new technologies and difficulties in 

coordination between departments. For 

example, Luxshare Precision Industry Co., Ltd. 

experienced a 15% decrease in production 

efficiency when implementing intelligent 

production due to employees’ unfamiliarity with 

new technologies. It took several months of 

training and adjustment to return to normal. 

(Zhang, L., & Li, M., 2023) 

 

Table 5. Resistance Types and Their Impact on Production Process Reengineering 

Resistance Type Occurrence 

Frequency 

Impact 

Employee Resistance 65% 15% reduction in production 

efficiency 

Departmental Coordination 

Difficulties 

55% 30% increase in project delay rate 

Management Concept Shift 40% 20% reduction in change success rate 

 

At the same time, intelligent production also 

prompts companies to change their 

organizational structure. Traditional 

organizational structures are usually 

hierarchical, with slow decision-making 

processes. Intelligent production requires rapid 

response to market changes, necessitating a 

flatter organizational structure with fewer 

management levels and higher decision-making 

efficiency. However, such organizational 

changes may cause employee anxiety and 

resistance, affecting the stable development of 

the company. 

4.2.2 Corporate Culture Adaptability Issues 

Traditional silicone rubber processing corporate 

culture often emphasizes production efficiency 

and cost control, focusing on employee 

execution and discipline. In contrast, the concept 

of intelligent production places greater 

emphasis on innovation, flexibility, and 

employee participation. This cultural conflict 

can lead to employee resistance to intelligent 

transformation, affecting the smooth progress of 

the transition. 

According to an industry survey, approximately 

70% of companies face cultural conflicts during 

intelligent transformation. This cultural 

difference makes employees feel uncomfortable 

and resistant when facing intelligent 

transformation. 

 

Table 6. Cultural Conflict Types and Their Impact on Intelligent Transformation 

Conflict Type Occurrence 

Frequency 

Impact 
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Lack of Innovation 

Awareness 

70% 30% reduction in employee participation 

Lack of Flexibility 60% Slow improvement in production efficiency 

Employee Resistance 50% 25% reduction in transformation success 

rate 

 

Companies need to shape a corporate culture 

that adapts to intelligent production to promote 

transformation. For example, companies can 

stimulate employee enthusiasm and creativity 

by conducting innovation competitions, 

establishing employee innovation reward 

mechanisms, and strengthening internal 

communication. At the same time, companies 

also need to strengthen employee training and 

education to improve their understanding of 

intelligent production and help employees 

establish correct values and work attitudes. 

In summary, the challenges faced by intelligent 

production in the silicone rubber processing 

industry are multifaceted, involving technology, 

talent, and management. Companies need to 

take effective measures in technical integration, 

data security, production process reengineering, 

and corporate culture to address these 

challenges and successfully achieve intelligent 

transformation. 

5. Strategies and Suggestions for Addressing 

Challenges 

5.1 Technical Strategies 

Research and Development and Collaboration 

In intelligent production, research and 

development is the core driving force for 

corporate progress. According to industry 

surveys, approximately 80% of silicone rubber 

processing companies face technical difficulties 

during intelligent transformation, mainly in 

high-precision equipment integration and data 

processing. Companies should increase research 

and development investment and establish close 

cooperation with universities and research 

institutions to jointly overcome technical 

difficulties. Through 

industry-university-research cooperation, 

companies can leverage external professional 

knowledge and technical strength to accelerate 

technological breakthroughs. For example, 

Germany’s Wacker Chemie collaborated with a 

university’s materials science college to jointly 

develop high-precision molding technology for 

silicone rubber products, successfully 

developing a new automated molding system. 

This system not only improved production 

efficiency but also significantly enhanced 

product quality, greatly enhancing the 

company’s market competitiveness. 

At the same time, companies should actively 

participate in the activities of industry 

associations and standardization organizations 

to promote the formulation and improvement of 

relevant standards. Currently, the 

communication protocols of Industrial Internet 

of Things devices have not been completely 

unified, resulting in obstacles to interconnection 

and interoperability between devices. 

Companies should participate in standard 

setting to ensure compatibility and integration 

between different technologies. In addition, 

companies need to strengthen data security 

management, establish data encryption systems, 

and formulate strict data security management 

systems. According to industry reports, 

approximately 70% of companies face data 

security risks during intelligent production. 

Through data encryption and strict access 

control, companies can effectively reduce the 

risk of data leakage and ensure the sustainable 

development of intelligent production. 

5.2 Talent Strategies 

Talent Development and Recruitment 

Industry surveys show that approximately 75% 

of companies face talent shortages during 

intelligent transformation. Companies should 

collaborate with educational institutions to 

jointly design intelligent production talent 

development programs, enhancing the 

intelligent production skills of existing 

employees through internal training and online 

learning. For example, Germany’s Wacker 

Chemie collaborated with RWTH Aachen 

University to offer a specialized course in 

“Intelligent Silicone Rubber Processing 

Technology,” cultivating technical talent for the 

company. At the same time, companies should 

optimize their compensation and benefits 

systems, providing attractive career 

development opportunities to attract 

high-quality intelligent production talent. For 



Journal of Progress in Engineering and Physical Science 

23 
 

example, Wacker Chemie established a special 

research fund to support employee innovation 

projects, offering generous rewards based on 

project outcomes. This innovative talent 

recruitment mechanism not only attracted a 

large number of outstanding talents to join the 

company but also motivated employees’ 

enthusiasm and creativity, providing strong 

support for the company’s technological 

innovation and intelligent transformation. (Patel, 

A., & Kumar, R., 2022) 

5.3 Management Strategies 

Production Process Reengineering and 

Organizational Change 

Before investing in intelligent production, 

companies should develop detailed plans and 

budgets, inviting professional consulting firms 

to conduct feasibility assessments, including 

market demand, technological maturity, and 

return on investment. Through comprehensive 

evaluation, companies can better grasp the 

direction of investment and avoid the risks 

associated with blind investment. 

In addition, companies should establish risk 

warning mechanisms to timely detect and 

respond to potential risks, ensuring the smooth 

implementation of investment projects. 

Furthermore, companies should establish a 

benefit assessment index system from 

dimensions such as production efficiency, 

product quality, cost control, and market 

competitiveness, regularly collecting and 

analyzing data to accurately measure the actual 

effects of intelligent production projects. For 

example, a company improved production 

efficiency by 25%, increased product quality 

pass rate by 15%, reduced production costs by 

10%, and significantly enhanced market 

competitiveness through intelligent production. 

This scientific benefit assessment system not 

only helps companies understand the 

implementation effects of intelligent production 

projects but also provides a basis for companies 

to further optimize production processes and 

management decisions. (Zhang, L., & Li, M., 

2023) 

5.4 Cost and Benefit Strategies 

Investment Planning and Benefit Assessment 

Before investing in intelligent production, 

companies should develop detailed plans and 

budgets, inviting professional consulting firms 

to conduct feasibility assessments, including 

market demand, technological maturity, and 

return on investment. Through comprehensive 

evaluation, companies can better grasp the 

direction of investment and avoid the risks 

associated with blind investment. 

In addition, companies should establish a 

benefit assessment index system from 

dimensions such as production efficiency, 

product quality, cost control, and market 

competitiveness, regularly collecting and 

analyzing data to accurately measure the actual 

effects of intelligent production projects. For 

example, a company improved production 

efficiency by 25%, increased product quality 

pass rate by 15%, reduced production costs by 

10%, and significantly enhanced market 

competitiveness through intelligent production. 

This scientific benefit assessment system not 

only helps companies understand the 

implementation effects of intelligent production 

projects but also provides a basis for companies 

to further optimize production processes and 

management decisions. 

6. Conclusion 

6.1 Advantages and Challenges of Intelligent 

Production in Silicone Rubber Processing 

6.1.1 Advantages of Application 

The application of intelligent production in the 

silicone rubber processing industry has shown 

significant advantages. By introducing advanced 

automated equipment, the Industrial Internet of 

Things, big data analytics, and other 

technologies, companies have not only 

improved production efficiency but also 

significantly enhanced product quality and 

market competitiveness. For example, 

Germany’s Wacker Chemie improved 

production efficiency by 25%, increased product 

quality pass rate by 15%, and reduced 

production costs by 10% after implementing 

intelligent transformation. These data fully 

demonstrate the great potential of intelligent 

production in enhancing corporate 

competitiveness. 

 

Table 7. Comparison of Key Indicators Before and After Intelligent Transformation 

Indicator Type Before Transformation After Transformation Improvement 
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Production Efficiency 100% 125% +25% 

Product Quality Pass Rate 85% 100% +15% 

Production Costs 100% 90% -10% 

 

6.1.2 Challenges Faced 

Despite the numerous advantages brought by 

intelligent production, it also faces many 

challenges. On the technical side, the purchase 

and maintenance costs of high-precision 

equipment are high, technical integration and 

compatibility issues are prominent, and data 

security and privacy protection are difficult. For 

example, the communication protocols of 

Industrial Internet of Things devices have not 

been completely unified, resulting in obstacles to 

interconnection and interoperability between 

devices. According to industry surveys, 

approximately 70% of companies encounter 

communication protocol inconsistencies during 

technical integration, resulting in a 20% decrease 

in production efficiency. 

 

Table 8. Frequency and Impact of Technical Challenges 

Challenge Type Occurrence 

Frequency 

Impact 

Communication Protocol 

Inconsistency 

70% 20% reduction in production efficiency 

Data Format Mismatch 60% 30% increase in data analysis error rate 

System Compatibility Issues 50% 40% increase in equipment coordination 

failure rate 

 

On the talent side, there is a shortage of 

compound talents who understand both rubber 

processing and information technology, and it is 

difficult to cultivate and recruit such talents. 

According to industry surveys, approximately 

75% of companies face talent shortages during 

intelligent transformation. On the management 

side, there is resistance to production process 

reengineering and organizational change, and 

the adaptability of corporate culture needs to be 

addressed. On the cost and benefit side, the 

initial investment pressure is high, and benefit 

assessment and measurement are difficult. 

6.2 Future Development Trends 

6.2.1 Predicting Future Directions 

Looking ahead, the application of intelligent 

production in the silicone rubber processing 

industry will develop towards a higher degree 

of integration of automation, intelligence, and 

green development. With continuous 

technological progress, automated equipment 

will become smarter and capable of performing 

more complex production tasks. For example, 

future automated injection molding machines 

will have self-diagnosis and self-repair 

functions, capable of real-time adjustment of 

production parameters to ensure the stability of 

product quality. Intelligent production will be 

deeply integrated with big data analytics and 

artificial intelligence, achieving full automation 

and intelligent monitoring of the production 

process. 

6.2.2 Green Development 

At the same time, green development will 

become a key focus in the future, with 

companies paying more attention to energy 

conservation, emission reduction, and resource 

recycling to meet increasingly stringent 

environmental requirements. According to 

industry reports, approximately 80% of 

companies will prioritize green development 

during intelligent transformation, reducing 

energy consumption and waste emissions by 

adopting energy-saving equipment and 

optimizing production processes. 
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Abstract 

As China accelerates its urban development and decarbonization agendas, prefabricated construction 

has emerged as a promising strategy for delivering low-carbon housing. However, the true carbon 

performance of prefabricated systems remains understudied, particularly across full building life 

cycles. This study evaluates the life cycle carbon emissions of a mid-rise prefabricated residential 

building in Nanjing by integrating Building Information Modeling (BIM) with Life Cycle Assessment 

(LCA). Using a cradle-to-grave framework, the research identifies material-specific emission hotspots, 

quantifies embodied and operational carbon contributions, and conducts scenario testing to assess the 

sensitivity of design variations. Results show that the total carbon footprint of the building is 419 

kgCO₂e/m², with embodied carbon accounting for 71% of life cycle emissions. Major contributors 

include precast concrete, steel reinforcement, and insulation materials. Scenario analysis reveals that 

substituting high-carbon materials and improving logistics can reduce emissions by up to 18%. The 

study concludes with policy recommendations for integrating BIM-LCA tools into municipal design 

regulation and national prefabrication strategy. These findings offer both methodological and practical 

insights for advancing carbon-conscious construction in China’s rapidly urbanizing regions. 

Keywords: BIM-LCA integration, prefabricated housing, carbon emissions, life cycle assessment, 

embodied carbon, sustainable construction 

 

 

 

1. Introduction 

China is undergoing an intense urban 

transformation, marked by rapid land 

development, expanding housing needs, and 

ambitious environmental targets. By 2035, over 

70% of the Chinese population is expected to 

live in cities, placing considerable pressure on 

the construction sector to deliver buildings that 

are not only fast and cost-effective, but also 

environmentally responsible. Simultaneously, 

the national commitment to achieve carbon 

peaking before 2030 and carbon neutrality by 

2060—commonly referred to as the “Dual 

Carbon” goal—has elevated the importance of 

reducing emissions from all phases of the 

building life cycle. 

Against this backdrop, prefabricated 

construction, also known in China as 

“industrialized building,” has become a central 

strategy in sustainable urbanization policy. It 
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enables off-site production of building 

components under controlled conditions, 

followed by efficient on-site assembly. This 

model reduces labor intensity, shortens project 

durations, and minimizes construction waste. 

Major urban centers such as Beijing, Shanghai, 

and Nanjing have established prefabrication 

development quotas, requiring a significant 

share of new buildings to use modular or 

semi-modular systems. Jiangsu Province, where 

Nanjing is located, has been particularly 

aggressive, mandating prefabrication rates 

above 50% for public housing projects since 

2018. 

Despite these policy incentives, the 

environmental benefits of prefabrication remain 

contested. While it is widely assumed to be 

“greener,” evidence shows that factory-based 

precast systems can have higher embodied 

carbon due to cement-intensive materials and 

transport emissions. These trade-offs are further 

complicated by China’s regional disparities in 

electricity generation, material sourcing, and 

transport infrastructure. Thus, a nuanced and 

data-driven understanding of the carbon profile 

of prefabricated buildings is 

essential—particularly in cities like Nanjing, 

where both urban expansion and environmental 

accountability converge. 

This study investigates the carbon emission 

performance of a mid-rise prefabricated 

residential building in Nanjing, using an 

integrated method that combines Building 

Information Modeling (BIM) and Life Cycle 

Assessment (LCA). By doing so, it addresses a 

critical gap in applied sustainability research: 

how to link digital design tools with 

environmental performance analytics in the 

context of industrialized housing delivery. 

2. Technological Convergence: BIM and LCA 

in Sustainable Building Analysis 

Recent advances in digital construction 

technologies have made it possible to simulate 

and evaluate the environmental impacts of 

buildings in unprecedented detail. Among these, 

Building Information Modeling (BIM) and Life 

Cycle Assessment (LCA) stand out as two 

complementary yet distinct tools. BIM provides 

a digital representation of a building’s geometry, 

materials, quantities, and components, while 

LCA evaluates the environmental 

consequences—primarily carbon 

emissions—associated with each life cycle stage. 

When integrated, BIM and LCA form a powerful 

platform for evidence-based design optimization, 

particularly in prefabricated construction where 

repeatability and material transparency are 

high. 

The core advantage of BIM is its ability to embed 

detailed material and structural data into digital 

models at early design stages. In prefabricated 

buildings, BIM supports accurate quantity 

takeoff, modular coordination, clash detection, 

and logistics planning. Crucially, BIM models 

can be structured to export structured data (e.g., 

in IFC format) to downstream analysis tools, 

including LCA platforms. This allows for 

automated material mapping, real-time 

feedback on carbon impacts, and iterative 

comparison of design alternatives—enabling 

architects and engineers to make 

carbon-informed decisions before construction 

begins. 

LCA, governed by ISO 14040 and ISO 21930 

standards, provides a scientific framework for 

assessing emissions across production (A1–A3), 

transportation and construction (A4–A5), use 

(B1–B7), and end-of-life stages (C1–C4). In the 

Chinese context, LCA practices are becoming 

increasingly institutionalized, with databases 

such as the China Life Cycle Database (CLCD) 

and standards like GB/T 51366-2019 offering 

regionally adapted carbon factors and 

evaluation guidelines. However, manual LCA 

remains time-consuming and prone to input 

inconsistencies—challenges that BIM integration 

can directly address. 

This convergence is particularly well-suited to 

prefabricated projects. Because modules and 

components are produced in standardized 

formats and repeated across multiple buildings 

or floors, a single BIM-LCA model can generate 

scalable carbon profiles with high fidelity. 

Software solutions such as One Click LCA, Tally, 

and eToolLCD already support BIM import 

features, and localized emissions factors can be 

embedded into Revit material libraries or 

custom object properties. These workflows 

allow project teams to simulate carbon 

footprints under different design and supply 

chain scenarios—providing the type of 

flexibility and foresight that policy makers and 

developers increasingly demand. 

As the following sections will show, the 

combination of BIM and LCA offers not only a 

method for quantifying emissions, but also a 
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framework for designing prefabricated 

buildings that are truly optimized for China’s 

dual imperatives: urban expansion and carbon 

mitigation. 

3. Lifecycle Boundaries and Carbon Metrics in 

Prefabricated Projects 

3.1 System Boundary Selection and Its Impact on 

Carbon Outcomes 

A building’s carbon profile is significantly 

shaped by how its life cycle boundaries are 

defined. While simplified assessments often rely 

on cradle-to-gate logic—ending analysis at the 

factory—this approach overlooks critical 

emissions associated with transport, 

construction logistics, building operation, and 

deconstruction. For prefabricated buildings in 

particular, where much of the structure is 

fabricated off-site and then transported and 

assembled, the cradle-to-grave system boundary 

is indispensable for an honest carbon evaluation. 

Adopting the EN 15978 framework, this study 

accounts for the full spectrum of stages: 

• A1–A3: Material production (e.g., 

cement, steel, insulation) 

• A4: Transportation of modules to site 

• A5: Site assembly and installation 

• B1–B7: Use phase, including repair and 

energy consumption 

• C1–C4: End-of-life (demolition, 

recycling, disposal) 

In China, the GB/T 51366-2019 and GB/T 

50378-2019 standards also recognize the 

importance of full-cycle evaluation for green 

buildings. Prefabricated construction often shifts 

emissions from A5 (on-site construction) to A3 

(factory manufacturing), and from 

labor-intensity to logistics-intensity, especially 

with larger panel sizes and heavier module 

weight. In the case study examined, A4 

emissions alone contribute 12–18% of the total 

embodied carbon, a figure higher than typical 

cast-in-place projects. 

Furthermore, end-of-life emissions (C1–C4), 

often ignored in policy discourse, can be 

substantial in prefab buildings due to joint 

treatments, mechanical connections, and limited 

disassembly potential. This reinforces the need 

for design-for-disassembly (DfD) principles and 

circularity-ready structures, which can be 

simulated and tracked using BIM-LCA 

workflows. 

3.2 Carbon Categories and Data Input Selection 

In line with ISO 14040/14044 and EN 15804, this 

study categorizes carbon emissions into 

embodied carbon (EC) and operational carbon 

(OC). Embodied carbon comprises emissions 

generated before the building becomes 

operational, while operational carbon refers to 

those arising during its functional use, primarily 

from HVAC systems, lighting, and domestic 

energy loads. 

China’s Ministry of Housing and Urban-Rural 

Development has adopted regionally adapted 

operational benchmarks—Nanjing, being in the 

“hot summer–cold winter” climatic zone, has 

typical residential energy loads of 35–50 

kWh/m²/year depending on insulation and 

HVAC configuration. However, improvements 

in operational efficiency (e.g., use of VRF 

systems, renewable integration) are progressing 

rapidly, which shifts attention more urgently 

toward embodied emissions, particularly in 

short-lifespan or rapidly deployed prefab 

housing. 

To achieve accurate LCA modeling, this study 

adopts a hybrid data sourcing strategy: 

• Primary data from BIM models 

(generated in Autodesk Revit) is used to 

calculate quantities for walls, slabs, 

columns, beams, windows, and finishes. 

• Secondary data is drawn from the China 

Life Cycle Database (CLCD) and the 

Environmental Footprint of Building 

Materials Database managed by 

Tsinghua University. 

• For comparison, international datasets 

(e.g., Ecoinvent, ICE v3.0) are also 

referenced to validate deviation across 

regional material processes. 

Furthermore, input data considers temporal 

variability (e.g., cement carbon factor decline 

due to energy source decarbonization) and 

geographic variability (regional concrete mix 

designs), which are often overlooked in static 

LCA models but are critical for forecasting 

future project footprints. 

3.3 Material-Specific Impacts in Prefab Construction 

In prefabricated housing systems, material 

selection not only affects structural performance 

but also dictates life cycle carbon intensity. The 

most carbon-intensive material in the case study 

is precast concrete, particularly in load-bearing 

walls and staircases. Depending on the mix 
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design, its embodied carbon ranges from 

300–500 kgCO₂e/m³, with significant influence 

from: 

• Cement type (OPC vs. blended) 

• Aggregate extraction method 

• Energy source used for curing (electric 

steam vs. solar-assisted) 

Structural steel, widely used for embedded 

connectors and reinforcement, shows even 

higher per-unit emissions, averaging 1.9–2.1 

kgCO₂e/kg under China’s current energy mix. 

Unless sourced from electric arc furnaces (EAF) 

powered by renewables, these emissions remain 

a challenge. 

Secondary materials such as insulation, glazing, 

and interior finishes may contribute smaller 

absolute quantities but can become hotspots 

under certain conditions. For instance: 

• Polyurethane rigid foam (used in 

sandwich panels) emits 1500–1700 

kgCO₂e/m³. 

• Triple-glazed window units, while 

thermally efficient, can have high 

embodied energy due to metal spacers 

and gas fills. 

Moreover, transport logistics add a non-trivial 

load. In Nanjing’s case, transportation distances 

from local prefab plants (e.g., Nanjing Liuhe 

Prefab Base, ~35 km) using diesel-powered 

flatbed trucks added an average of 25–45 

kgCO₂e/m² to the A4 stage. As buildings scale 

up, these emissions can offset the savings from 

shorter on-site durations. 

To reduce material-specific impacts, several 

strategies are modeled in later sections: 

• High-substitution cement (with fly ash 

or slag content > 30%) 

• Recycled steel and rebar 

• CLT-based hybrid modules where local 

wood sourcing is available 

• Optimized transport scheduling and 

logistics clustering 

4. Data Modeling Workflow: BIM-Driven 

Carbon Quantification Process 

4.1 Model Preparation and Material Mapping 

The integration of Building Information 

Modeling (BIM) with Life Cycle Assessment 

(LCA) relies heavily on the accuracy, granularity, 

and completeness of digital models. In this study, 

a BIM model was developed using Autodesk 

Revit 2021, reflecting the full geometry, material 

composition, and construction sequencing of a 

five-story prefabricated residential building in 

Jiangbei New Area, Nanjing. The model 

includes parametric components for structural 

walls, precast floor slabs, windows, doors, roof 

panels, internal partitions, and mechanical 

systems, each tagged with detailed type, volume, 

and material information. 

Material mapping is a crucial step in this 

workflow, as it forms the bridge between design 

data and environmental analysis. Each BIM 

element is associated with a defined material in 

the Revit library, which is then linked to specific 

environmental product declarations (EPDs) or 

database entries containing life cycle inventory 

data. For instance, the “Precast Wall – 200mm” 

family is mapped to a regional concrete mix 

with 20% fly ash substitution and corresponding 

GWP values from the China Life Cycle Database 

(CLCD). Where available, supplier-specific EPDs 

are prioritized to enhance precision, especially 

for high-emission components such as cement, 

rebar, and insulation materials. 

To facilitate quantity takeoff, the model is 

organized into consistent layers by floor and 

function (e.g., core, shell, envelope), allowing for 

separation of reusable modules and permanent 

components. This structure supports sensitivity 

testing in later phases. Once all elements are 

correctly tagged and mapped, the model is 

exported in Industry Foundation Classes (IFC) 

format for compatibility with third-party LCA 

software. 

4.2 Tool Integration and Output Verification 

Following model preparation, the workflow 

continues with the import and processing of 

BIM data in an LCA platform. In this case, One 

Click LCA is selected due to its compatibility 

with Revit, integration with multiple regional 

databases (including CLCD and Ecoinvent), and 

built-in support for EN 15978-compliant 

reporting. The IFC export from Revit is 

uploaded into the One Click LCA environment, 

where a semi-automated mapping wizard 

assists in verifying quantities and material types 

against recognized environmental datasets. 

Quality control is conducted at multiple levels to 

ensure the integrity of the output. First, visual 

checks are performed to confirm that all 

building elements have been accurately 

interpreted in the LCA tool. Next, 

cross-comparisons between BIM-native takeoff 
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results and LCA platform quantities are used to 

identify missing or duplicated data. Special 

attention is given to mixed materials, such as 

composite floor panels or wall sections with 

embedded insulation, which require manual 

decomposition to apply distinct GWP values to 

each layer. 

Output data is categorized by life cycle stage 

and component group, enabling the calculation 

of total embodied carbon per square meter, as 

well as per-material emissions. These results are 

then validated against a baseline case derived 

from a conventional cast-in-place design for the 

same building type, allowing for relative 

performance assessment. The data modeling 

workflow is iterated with small variations in 

input parameters—such as material substitution, 

transportation distances, or module assembly 

logic—to test the sensitivity and resilience of the 

design under different carbon scenarios. 

The successful integration of BIM and LCA not 

only streamlines the analytical process but also 

enables dynamic feedback loops in early design 

phases. With accurate carbon insights embedded 

directly into the modeling environment, 

architects and engineers are empowered to 

make informed decisions that align aesthetic, 

structural, and environmental goals—crucial for 

advancing low-carbon housing delivery in 

fast-growing urban centers like Nanjing. 

5. Case Study Focus: Carbon Performance of a 

Residential Prefab Building in Nanjing 

5.1 Project Background and Technical Profile 

The case study examined in this research is a 

mid-rise prefabricated residential building 

situated in Jiangbei New Area, Nanjing—a 

region prioritized in recent years as a 

demonstration zone for green and industrialized 

construction under Jiangsu Province’s 

low-carbon urban development plan. Developed 

as part of a publicly subsidized housing 

initiative, the project consists of five 

above-ground floors and one basement level, 

with a total gross floor area (GFA) of 6,720 m². 

The structure adopts a reinforced concrete shear 

wall system with precast floor slabs and 

modular wall panels, achieving a prefabrication 

rate of 85.2% by construction value, meeting the 

Class B requirements under China’s Assessment 

Standard for Prefabricated Buildings (GB/T 

51231-2016). 

From a technical standpoint, the building’s 

modular system includes: 

• Sandwich precast concrete exterior walls, 

integrated with 50 mm polyurethane 

foam insulation; 

• Hollow-core precast floor slabs with 

standard 120 mm thickness; 

• Precast staircases, corridors, and 

balcony units; 

• Dry connections using embedded steel 

plates and site-welded steel 

reinforcement; 

• Aluminum-clad UPVC windows, with 

low-E coated double glazing. 

The building design was modeled using 

Autodesk Revit at LOD 300 and coordinated 

across architectural, structural, and MEP 

disciplines. Material libraries were enriched 

with environmental metadata to enable full 

BIM-LCA integration. Local energy performance 

benchmarks were applied based on the Design 

Standard for Energy Efficiency of Residential 

Buildings in the Hot Summer and Cold Winter 

Climate Zone (JGJ 134-2010). Operational 

parameters such as lighting density, ventilation 

rate, and domestic hot water loads were based 

on default occupancy profiles for low-rise 

multi-family units. 

This project typology is broadly representative 

of a growing category of government-led 

prefabricated housing across second-tier 

Chinese cities, making its carbon profile highly 

relevant for policy formulation and comparative 

modeling. 

5.2 Quantitative Carbon Footprint Analysis 

The carbon footprint of the building was 

assessed using a full cradle-to-grave life cycle 

framework, aligning with EN 15978 and GB/T 

51366-2019 methodologies. The analysis 

incorporates modules A1–A5 (production and 

construction), B6 (use-phase energy 

consumption), and C1–C4 (end-of-life processes). 

Emissions were modeled through One Click 

LCA, using quantity data extracted from Revit 

and mapped to China Life Cycle Database 

(CLCD) entries, supplemented by selected 

manufacturer-specific Environmental Product 

Declarations (EPDs). 

The total life cycle emissions of the building 

were calculated at 2,816,000 kgCO₂e, which 

translates to 419 kgCO₂e/m² of gross floor area. 

The breakdown is as follows: 

• Embodied carbon (A1–A5 + C1–C4): 
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~1,999,000 kgCO₂e (71%) 

• Operational carbon (B6): ~817,000 

kgCO₂e (29%) 

The embodied carbon portion is dominated by: 

• Precast exterior wall panels: 888,000 

kgCO₂e (~31.5%) 

• Reinforced steel rebar and inserts: 

540,000 kgCO₂e (~19.2%) 

• Precast hollow-core slabs: 275,000 

kgCO₂e (~9.8%) 

• Transportation and on-site installation: 

207,000 kgCO₂e (~7.3%) 

Operational emissions are modeled assuming a 

typical 36.5 kWh/m²/year electricity use, with a 

regional emission factor of 0.57 kgCO₂/kWh 

based on Jiangsu Province’s 2022 power mix 

(65% coal-based, 18% hydro, 10% solar and 

wind, 7% nuclear). Over a projected 50-year 

service life, the building’s use-phase carbon 

footprint equals approximately 121.5 

kgCO₂e/m²/year. 

While prefabrication significantly reduces waste 

and shortens construction timelines (project 

completion time: 7.5 months), it does not 

inherently guarantee lower carbon outcomes 

unless material selection and factory operations 

are optimized. As operational energy use 

continues to decline via improved appliances 

and grid decarbonization, embodied carbon will 

become the primary lever for long-term 

mitigation. 

5.3 Emission Hotspots and Component Evaluation 

Component-level analysis reveals that the 

building’s carbon hotspots are highly 

concentrated within a small number of materials 

and processes. The precast concrete exterior 

walls account for nearly one-third of total 

emissions. These panels include high-strength 

cement mixes (C40) and steam-cured 

reinforcement-intensive designs that, although 

structurally efficient, result in high carbon 

intensity. The cement used alone contributes 

~0.85 kgCO₂/kg, and its use per square meter of 

wall area surpasses that of equivalent 

cast-in-place designs due to reinforcement 

complexity. 

Steel reinforcement ranks second in impact. 

Even though rebar is partially recycled, its 

production route in China still primarily follows 

the blast furnace–basic oxygen furnace (BF–BOF) 

pathway, with average emissions of 1.9–2.1 

kgCO₂e/kg. The structural system includes 

dense stirrup placement in junction zones and 

embedded plates at connection points—details 

that improve seismic performance but add 

substantial carbon load. 

Among secondary contributors, polyurethane 

insulation foam, used in sandwich panel cavities, 

emits 1.6–1.8 kgCO₂e/kg. The study notes that 

despite its high thermal resistance, this 

insulation’s emissions are significant when 

scaled to the full envelope surface. Likewise, 

window systems with aluminum frames and 

coated glazing add considerable embodied 

carbon, mostly due to the smelting and 

extrusion stages of aluminum production. 

Construction-stage emissions (A5), including 

crane use, module positioning, and welding, 

though relatively modest in quantity (~55,000 

kgCO₂e), represent a critical component when 

logistics are not optimized. Daily delivery 

frequencies, partial truckloads, and vertical 

lifting delays are identified as operational 

inefficiencies with measurable carbon 

consequences. 

The findings underscore that carbon reduction 

in prefabricated systems requires intervention at 

the material supply chain and design 

optimization levels, not merely at the assembly 

site. Opportunities for improvement explored in 

the next section include mix design adjustments, 

transport scheduling optimization, and 

alternative materials—particularly 

wood-concrete hybrid structures in low-rise 

configurations. 

6. Scenario Testing and Emissions Sensitivity 

under Design Variations 

To evaluate the robustness of the base case 

results and explore opportunities for carbon 

reduction, several alternative design scenarios 

were modeled using the same BIM-LCA 

framework. These scenario tests focused on key 

emission-driving parameters including material 

selection, structural system, transportation 

logistics, and operational energy source. By 

varying these inputs individually while keeping 

other variables constant, the study establishes a 

comparative landscape of emission sensitivities 

for prefabricated residential construction in 

Nanjing. 

The first scenario tested the substitution of C40 

cement-based precast concrete with a 

high-volume fly ash concrete mix (30% fly ash). 

This adjustment, while maintaining structural 
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integrity, reduced the embodied emissions of 

precast wall and slab components by 

approximately 18.4%, leading to an overall life 

cycle carbon reduction of 11.2%. The result 

highlights the potential of mix design 

optimization as a practical strategy for 

immediate carbon savings, especially in markets 

where supplementary cementitious materials 

are readily available. 

A second scenario explored the replacement of 

traditional reinforcement steel with EAF-based 

recycled steel, assuming a best-case carbon 

factor of 0.72 kgCO₂e/kg (versus 1.95 kgCO₂e/kg 

in the base case). This substitution produced a 

9.7% reduction in embodied carbon, particularly 

in core structural zones where steel density is 

high. However, its feasibility depends on supply 

chain access to EAF steel, which is currently 

limited in many regions of eastern China. 

A third scenario simulated the use of 

cross-laminated timber (CLT) in place of 

non-load-bearing interior precast walls. 

Although the substitution scope is structurally 

constrained, CLT significantly reduced 

component-level emissions, contributing to a 

4.3% decrease in total embodied carbon. Beyond 

emissions, this also improved material 

circularity and disassembly potential, aligning 

with future-ready design principles. 

Transport-related sensitivity analysis showed 

that extending the average transportation 

distance from 35 km to 60 km (simulating less 

localized prefab plants) increased A4 emissions 

by 43.2%, translating into a 2.9% increase in total 

life cycle emissions. Conversely, optimized 

logistics routing and full-load delivery planning 

were modeled to reduce A4 emissions by up to 

35%, illustrating the importance of supply chain 

coordination in emission control. 

Finally, operational energy modeling compared 

the base case (coal-heavy grid at 0.57 

kgCO₂/kWh) with a projected decarbonized grid 

mix for Jiangsu in 2035 (estimated at 0.32 

kgCO₂/kWh). Under the low-carbon scenario, B6 

emissions declined by 44%, reducing total life 

cycle emissions by nearly 13%. If paired with 

rooftop photovoltaics and energy storage 

(modeled at 45% on-site coverage), emissions 

from building operation could fall even further, 

making net-zero operational performance within 

reach. 

These findings demonstrate that design 

variation at the early planning stage can lead to 

substantial differences in carbon outcomes, and 

that BIM-LCA integration offers a viable 

platform for iterative optimization. Material 

substitution and cleaner energy sourcing show 

the highest sensitivity, while transport and 

system assembly logistics offer moderate but 

non-negligible reduction potential. These 

insights inform the policy and design 

recommendations presented in the final section. 

7. Policy Alignment and Recommendations for 

Scalable Carbon Reduction 

The results of this study underscore the 

potential—and the complexity—of using 

prefabricated residential construction as a 

strategy for low-carbon urban development in 

China. While modularization offers clear 

advantages in terms of construction efficiency, 

material standardization, and waste reduction, 

its actual contribution to national carbon 

neutrality targets depends heavily on how 

design decisions, material choices, and supply 

chains are managed. In cities like Nanjing, 

where both high construction demand and 

climate action pressure coexist, aligning 

technological tools with regulatory frameworks 

is essential. 

At the local level, Nanjing has introduced a 

series of green building initiatives under the 

Nanjing Municipal Green Construction 

Management Measures (2020), including 

performance-based incentives for projects that 

meet specific prefabrication rates, energy 

efficiency metrics, and environmental 

certifications. However, these standards remain 

largely form-based and do not yet mandate full 

life cycle carbon assessments (LCCAs) as part of 

project approvals. Integrating BIM-LCA 

workflows into local permitting systems would 

enable more transparent and quantifiable 

tracking of emissions at the design 

stage—aligning with global best practices as 

seen in cities like Helsinki, Singapore, and 

London. 

To accelerate decarbonization, this study 

recommends the adoption of three core policy 

mechanisms: 

1) Mandatory embodied carbon 

benchmarks for public housing 

developments, enforced through LCA 

reporting at early design phases. These 

benchmarks should be differentiated by 

building type, height, and structure. 

2) Incentivized procurement standards 
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that reward the use of low-carbon 

construction materials (e.g., blended 

cement, recycled steel, CLT), verified via 

Environmental Product Declarations 

(EPDs) and integrated into BIM 

metadata libraries. 

3) Digital twin-based post-occupancy 

tracking systems, linking as-built BIM 

models with operational energy 

monitoring platforms. This would allow 

real-time performance verification and 

support carbon audits over the 

building’s lifecycle. 

At the national level, the alignment of this case 

study with China’s “Dual Carbon” 

targets—peaking CO₂ emissions before 2030 and 

achieving neutrality by 2060—depends on the 

ability of prefabricated housing to scale while 

reducing its embodied carbon intensity. National 

codes such as GB/T 51366-2019 already require 

LCA considerations in high-performance 

buildings, but the lack of standardized 

databases, third-party verification systems, and 

integration into mainstream design platforms 

remains a barrier. Investment in digital 

infrastructure and national material emissions 

baselines is needed to support meaningful 

comparisons and carbon labeling across 

provinces. 

In terms of industry-wide transformation, a 

unified BIM-LCA certification platform 

supported by government, academia, and 

private developers could become the digital 

backbone of China’s low-carbon construction 

strategy. Such a platform would allow 

standardized reporting, facilitate best practice 

sharing, and eventually feed into carbon trading 

or taxation schemes under China’s emerging 

environmental finance system. 

Ultimately, this study argues that prefabrication 

is not inherently low-carbon, but it can become 

so—if coupled with data-rich digital tools, life 

cycle thinking, and policy frameworks that 

reward long-term environmental performance. 

In a rapidly urbanizing and carbon-constrained 

future, cities like Nanjing stand to benefit from 

becoming national testbeds for these integrated 

approaches. 
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Abstract 

To make the research on multi-target dairy cow feeding behavior recognition in pastures more 

lightweight and improve the detection accuracy and inference speed of the model, this paper proposes 

a lightweight and improved algorithm YOLOv7-CDD based on the YOLOv7 object detection model. 

Firstly, the algorithm adds the CA attention mechanism module to the last layer of all backbone 

extraction networks to replace the original output layer, resulting in better detection performance and 

higher accuracy without the need for manual threshold adjustment. Secondly, DSConv is introduced to 

replace some conventional convolutions (3×3 convolutions) in the back-bone network and in the multi-

branch stacking module (Multi_Concat_Block), further reducing the number of model parameters 

without compromising detection accuracy. Finally, the dynamic detection head Dynamic Head is added, 

enhancing the expression capability of the target detection head and further improving detection 

accuracy without increasing computational complexity. Experimental results show that the YOLOv7-

CDD model achieves an accuracy of 98.4%, a recall rate of 98.3%, and an mAP@0.5 of 99.3%, representing 

improvements of 2.8%, 2.6%, and 3.1%, respectively, compared to the YOLOv7 model, while 

significantly reducing model parameters and GFLOPs, demonstrating that YOLOv7-CDD meets the 

application requirements in pastures. 

Keywords: multi-target, YOLOv7, lightweight, attention mechanism, cow feeding behavior 

 

 

 

1. Introduction 

The eating behavior of dairy cows is of great 

research significance in the process of dairy 

farming. By analyzing the eating behavior of 

dairy cows, we can understand the preference of 

dairy cows for different feeds, feed consumption 

and other information, so as to better meet the 

nutritional needs of dairy cows and improve 

production efficiency (Eleonora F, Alberto R, 

Mirco C. et al., 2023; Zou J. & Arshad RM., 2024). 

Abnormal changes in the eating behavior of dairy 

cows may be a precursor to certain health 

problems, such as anorexia and digestive system 
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diseases (Li Z, Zhu Y, Sui S. et al., 2024). By 

monitoring the eating behavior of dairy cows, 

these problems can be discovered and treated in 

time, reducing the incidence and mortality of 

diseases (Xing Yongxin, Sun Youdong & Wang 

Tianyi, 2022). By observing the eating behavior of 

dairy cows, we can understand the feed intake, 

feeding speed, preferences and other information 

of dairy cows, so as to optimize feeding 

management and feed rationing and improve the 

production performance and health of dairy 

cows (Song Huaibo, Li Rong, Wang Yunfei et al., 

2023; Bai Qiang, Gao Ronghua, Zhao Chunjiang 

et al., 2022; Wang Zheng, Xu Xingshi, Hua Zhixin 

et al., 2022). By monitoring and analyzing the 

eating behavior of dairy cows, a large amount of 

production data can be obtained, and prediction 

models and decision support systems can be 

established based on these data, providing 

scientific basis for farm managers to help make 

more accurate decisions, such as feed rationing, 

disease prevention and control, and improve the 

efficiency and sustainability of agricultural 

production (Qin Lifeng, Zhang Xiaoqian, Dong 

Mingxing et al., 2021). Therefore, it is very 

necessary to develop a method for monitoring 

the eating behavior of multi-target cows based on 

machine vision. Liu Yuefeng et al. proposed a 

better sparse subnetwork screening method 

based on the YOLOv3 amplitude iteration 

pruning algorithm to realize the detection of cow 

eating behavior. This method illustrates the 

feasibility of reducing the cost of cow behavior 

monitoring tasks through amplitude iteration 

pruning technology, verifies the effectiveness of 

screening better sparse subnetworks from the 

cow eating behavior recognition model based on 

the lottery hypothesis, and provides a reference 

for reducing the cost of animal behavior 

monitoring tasks. However, this model focuses 

more on the lightweight of the model and does 

not pay much attention to improving the 

accuracy of the model. Song Lvming et al. 

proposed a new method for detecting small 

samples of glass surface defects by adding a 

convolutional attention mechanism module and 

a pre-detection head to YOLOv7, and used image 

enhancement methods such as random Gaussian 

noise, Mix-up, random filling images and 

random splicing to expand the samples and 

balance the samples. The improved model 

improves the efficiency of detecting glass surface 

defects in engineering to a certain extent, but this 

model does not pay attention to the problem of 

model lightweight. Zhang Zhen et al. proposed a 

lightweight apple detection model based on 

YOLOv7, adding partial convolution (PConv) 

and efficient channel attention (ECA) modules to 

the model, and using the Sparrow search 

algorithm (SSA) during model training to further 

improve the detection accuracy of the model. 

This laid the foundation for unmanned 

intelligent apple picking. Deng Changzheng et al. 

proposed an infrared image recognition 

algorithm for substation equipment based on 

YOLOv7-Tiny, introducing a lightweight 

bottleneck structure GhostNetV2BottleNeck to 

replace part of the CBS module, and embedding 

the CA attention mechanism in the feature 

extraction stage, replacing the network 

coordinate loss function with SIoU Loss. This laid 

the foundation for subsequent substation fault 

diagnosis. The above algorithm considers 

changing the backbone convolution layer, 

backbone extraction network and model pruning, 

so some operations are complex and some 

workloads are large. It is possible to consider 

using a more simplified and efficient 

optimization technology to lightweight the 

model. 

In order to solve the problem of complex 

operation and large processing volume of the 

above model, this paper applies neural network 

to the recognition of dairy cow eating behavior, 

and uses image recognition technology based on 

YOLOv7 model to integrate CA attention 

mechanism, DSConv convolution and Dynamic 

Head dynamic detection head to propose a more 

lightweight dairy cow eating behavior 

recognition detection model YOLOv7-CDD. This 

model uses the pasture dairy cow eating data set 

to train and test the model, and compares it with 

other commonly used detection models to 

achieve the compression of the dairy cow eating 

behavior recognition model, while ensuring that 

the model performance is not affected or even 

better. Finally, the model is trained and tested, 

and the detection effect is compared with other 

detection models, hoping to provide a reliable 

new idea for the research on pasture dairy cow 

eating behavior recognition. 

2. Materials and Methods 

2.1 Construction of YOLOv7-CDD Model 

2.1.1 CA Attention Mechanism Module 

When existing attention mechanisms (such as 

CBAM, SE, etc.) obtain channel attention, they 

generally use global maximum pooling or 
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average pooling to process channels. Although 

this can maintain the most important features of 

the input feature map and reduce the risk of 

overfitting, it will also lose the spatial position 

information of the object. The CA attention 

mechanism (Li Yuwei, Fu Rui & Liu Fan, 2024) 

embeds the position information into the channel 

information. The implementation of the CA 

attention mechanism is mainly divided into two 

parallel stages: global average pooling of the 

input information with a width of w and a 

number of channels of c and a height of h and a 

number of channels of c respectively to obtain 

two feature layers, namely, feature maps in the 

wide dimension and feature maps in the high 

dimension, as shown in equations (1) and (2). 

𝑧𝑐
ℎ(ℎ) =

1

𝑊
∑ 𝑥𝑐(ℎ, 𝑖)0≤𝑖<𝑊          (1) 

𝑧𝑐
𝑤(𝑤) =

1

𝐻
∑ 𝑥𝑐(𝑗, 𝑤)0≤𝑗<𝐻         (2) 

Then the two parallel stages are merged to 

transpose the width and height to the same 

dimension and stacked, the features of width and 

height are merged together, and the convolution 

normalization activation function is used for 

feature extraction, see formula (3). 

f = δ (F1([z
h, zw]))           (3) 

Where f is the intermediate feature map, which is 

used to store spatial information in the horizontal 

and vertical directions, fϵRC/r×(H＋W)×1  and, δ is 

a nonlinear activation function. Along the spatial 

dimension, f is cut into height and width, 𝑓ℎ ∈

𝑅𝐶/𝑟×𝐻×1  and then the number of channels is 

adjusted 𝑓𝑤 ∈ 𝑅𝐶/𝑟×1×𝑊  to be consistent with 

the number of channels in the input feature map 

using 1×1 convolution, and the sigmoid function 

is used to obtain the final attention weights 𝑔ℎ 

and 𝑔𝑤, see equations (4) and (5). 

𝑔ℎ = 𝜎(𝐹ℎ(𝑓
ℎ))              (4) 

𝑔𝑤 = 𝜎(𝐹𝑤(𝑓
𝑤))            (5) 

Where 𝐹ℎ  and 𝐹𝑤  are 1×1 convolutions, is the 

sigmoid activation function, 𝑔ℎ and 𝑔𝑤 are the 

adjusted attention weights. Finally, multiplying 

the weight by the input feature map can obtain 

the re-weighted feature map. The output formula 

of Coordinate Attention is shown in formula (6). 

𝑦𝑐(𝑖, 𝑗) = 𝑥𝑐(𝑖, 𝑗) × 𝑔𝑐
ℎ(𝑖) × 𝑔𝑐

𝑤(𝑗)      (6) 

Where 𝑦𝑐(𝑖, 𝑗) is the output feature map, 𝑥𝑐(𝑖, 𝑗) 

is the input feature map, 𝑔𝑐
𝑤(𝑗) and 𝑔𝑐

ℎ(𝑖) is the 

attention weights in the horizontal and vertical 

directions. The CA attention mechanism usually 

does not need to perform global calculations on 

all positions, but dynamically adjusts the 

attention weights based on the relevance of the 

input data. Therefore, the introduction of the CA 

attention mechanism can reduce the amount of 

calculation and improve the efficiency of model 

detection. The structural flow of the CA attention 

mechanism is shown in Figure 1. 

 

Figure 1. CA attention mechanism structure 

flow chart 

Note: C, H, W are the number of channels, width, 

and height of the input feature map, and r is the 

reduction factor. 

 

2.1.2 DSConv 

Distribution Shifting Convolution (Jia Xueying, 

Zhao Chunjiang, Zhou Juan et al., 2023) (DSConv) 

is a variant of depthwise separable convolution 

and has been widely used in the field of computer 

vision. Its working principle is shown in Figure 2. 

Depthwise separable convolution can be divided 

into two steps. The first step is channel-by-

channel convolution and the second step is point-

by-point convolution. Ordinary convolution 

requires convolution on each channel, while 

depthwise convolution only performs 

convolution on a single channel and applies an 



Journal of Progress in Engineering and Physical Science 

37 
 

independent convolution kernel to each channel. 

Point-by-point convolution is a 1×1 convolution. 

Like regular convolution operations, it applies a 

convolution kernel on all channels to fuse the 

results of depthwise convolution. The advantage 

of DSConv over traditional depthwise separable 

convolution is that it uses learnable convolution 

kernels to improve model performance (Xu 

Hongwei, Li Ran & Zhang Jiaxu, 2024). DSConv 

decomposes the traditional convolution kernel 

into two components: variable quantization 

kernel (VQK) and distribution shift. It achieves 

lower memory usage and higher speed by storing 

only the integer value in VQK, while maintaining 

the same output as the original convolution by 

applying kernel-based and channel-based 

distribution shifts (Niu Weihua & Wei Yali, 2024). 

Therefore, DSConv is introduced into this model 

to make the model faster and occupy less 

memory, thus realizing a lightweight structure of 

the model. 

 

Figure 2. DSConv working principle diagram 

Note: In the figure, ◎ represents the Hadamard operator (or element operator). 

 

In the figure above, the size of the original 

convolution tensor is recorded as (c ℎ𝑜, c ℎ𝑖, k, k), 

where c is the number of channels in the lower 

layer, c is the number of channels in the current 

layer, and k is the height and width of the kernel. 

In this model, DSConv is introduced to replace 

the 3×3 conventional convolution in the multi-

branch stacking module Multi_Concat_Block in 

Backbone and Neck for lightweight 

improvement, so as to design a lighter and faster 

network model. The replaced D-

Multi_Concat_Block module is shown in Figure 

3. 

 

Figure 3. Improved D-Multi_Concat_Block 
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2.1.3 Dynamic Head 

The traditional detection head attention can only 

solve one of the problems in scale perception, 

space perception and task perception. For a given 

feature tensor, its generalized attention can be 

expressed as formula (7): 

W(F) = π(F) ∙ F              (7) 

Where π(∙)  is the attention function, which is 

implemented by the fully connected layer, but 

this method has a large amount of calculation and 

is time-consuming and laborious in practical 

application. The solution of the dynamic 

detection head Dynamic Head is to convert the 

above attention into three sequences, each of 

which focuses on only one dimension. The 

calculation formula can be shown as formula (8): 

W(F) = πC(πS(πL(F) ∙ F) ∙ F) ∙ F       (8) 

Among them πC(∙) , πS(∙) , πL(∙)  represent the 

attention in the three dimensions of C, S, and L 

respectively. 

The dynamic detection head combines scale 

awareness, spatial awareness and task awareness 

by coherently combining multiple self-attention 

mechanisms between feature levels of scale 

awareness, spatial locations of spatial awareness, 

and within the output channels of task awareness, 

significantly This significantly improves the 

representation ability of target detection heads. 

In the Dynamic Head framework, the output of 

Backbone is regarded as a three-dimensional 

tensor: level × space × channel, where level is the 

feature level, space is the width and height 

product of the feature layer, and channel is the 

number of channels. Dynamic Head deploys 

attention mechanisms separately in specific 

dimensions. That is, the scale-aware attention 

module scale-aware attention (level-wise) is 

deployed on the feature level. Feature maps at 

different levels correspond to different target 

scales. Adding attention at the feature level can 

enhance the scale-aware ability of target 

detection (Xu Ming, Qu Taipeng & Jiang Yanji, 

2024), its calculation formula is as formula (9); 

𝜋𝐿(𝐹) ∙ 𝐹 = 𝜎(𝑓(
1

𝑆𝐶
∑ 𝐹𝑆,𝐶 )) ∙ 𝐹       (9) 

Where is a linear function, which is 

approximated by 1 f(∙) × 1 convolution σ(x) =

max(0,min(1,
x+1

2
))  in Dynamic Head and is a 

hard-sigmoid function. 

Deploy the spatial-aware attention module 

spatial-aware attention (spatial-wise) on the 

spatial dimension space. Different spatial 

positions correspond to the geometric 

transformation of the target. Increasing attention 

on the spatial dimension can enhance the spatial 

position perception ability of the target detector 

(Qu Chenyang & Cheng Yanyun, 2024). Its 

calculation formula is as shown in formula (10); 

𝜋𝑆(𝐹) ∙ 𝐹 =
1

𝐿
∑ ∑ 𝑤𝑙,𝑘

𝐾
𝑘=1

𝐿
𝑙=1 ∙ 𝐹(𝑙; 𝑝𝑘 + ∆𝑝𝑘 ; 𝐶) ∙ ∆𝑚𝑘                     (10) 

Where k is the number of sparsely sampled 

locations, is 𝑝𝑘 + ∆𝑝𝑘 the position moved by the 

∆𝑚𝑘 self-learned spatial offset to focus on a 

discriminative region, ∆𝑝𝑘  and is the importance 

measure of the self-learned location 𝑝𝑘 , which 

are all learned from the input features at the 

median level of F. 

The task-aware attention module (channel-wise) 

is deployed on the channel. Different channels 

correspond to different tasks. Adding attention to 

the channel can enhance the object detection’s 

perception of different tasks (Cui Liqun & Cao 

Huawei, 2024). Its calculation formula is shown 

in formula (11). 

𝜋𝐶(𝐹) ∙ 𝐹 = 𝑚𝑎𝑥(𝛼1(𝐹) ∙ 𝐹𝑐 + 𝛽1(𝐹), 𝛼2(𝐹) ∙ 𝐹𝑐 + 𝛽2(𝐹))                  (11) 

Where 𝐹𝑐 is the feature slice of the C channel, 
[𝛼1, 𝛽1, 𝛼2, 𝛽2]𝑇 = 𝜃(∙)  is the hyperfunction for 

learning to control the activation threshold, and 

𝜃(∙)  is used similarly to Dynamic relu. First, 

global pooling is performed on the L×S 

dimension, then two fully connected layers and a 

normalization layer are used, and finally the 

output is normalized to using the shifted sigmoid 

function [−1,1]. 

Since the above three attention mechanisms are 

random, we can use formula (8) to serialize and 

stack them multiple times. The network details of 

its working principle are shown in Figure 4. 
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Figure 4. Dynamic Head detailed design network details 

 

2.1.4 YOLOv7-CDD Model 

This model adds the CA attention mechanism 
module to the last layer of all backbone extraction 
networks in Backbone to replace the original 
output layer. The detection effect after 
replacement is better than directly replacing the 
C3 module of all backbone extraction networks in 
Backbone with the CA module. It is more 
accurate and simplified, and does not require 
manual adjustment of thresholds. And DSConv 
was introduced to replace some of the 
conventional convolutions (3×3 convolution) in 

the Backbone Network and some of the 
conventional convolutions (3×3 convolution) in 
the multi-branch stacking module 
Multi_Concat_Block, without reducing the 
model detection accuracy. Under the premise, the 
number of parameters of the model can be further 
reduced. Finally, adding the dynamic detection 
head Dynamic Head can significantly improve 
the expression ability of the target detection head 
without increasing the amount of calculation. 
The structure of the improved algorithm 
YOLOv7-CDD network model is shown in Figure 
5. 
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Figure 5. YOLOv7-CDD network model structure 

 

2.2 Experimental Data and Methods 

2.2.1 Experimental Environment and Parameter 

Settings 

Experimental environment: The system used in 

this experiment is Windows 10, Intel(R) Core (TM) 

i7-9700k-3.6GHz (CPU), NVIDIA-GeForce-RTX-

2080Ti-11G*2 (GPU), and 48GB (RAM). The GPU 

is used to accelerate model training. The software 

used is PyCharm 2022, CUDA 11.6, Python ver-

sion 3.8, and the framework is PyTorch version 

1.12.0. 

Parameter setting: the number of model training 

iterations is 150, and the batch size is 32. 

2.2.2 Dataset 

The dataset used in this study is a field scene shot 

of a ranch in Inner Mongolia, which contains a to-

tal of 7166 1280×720 pixel pictures of dairy cows 

eating and not eating. In the experiment, the ratio 

of training set, test set and validation set are set 

to 6:3:1, that is, there are 4300 training set pictures, 

2150 test set pictures, and 716 validation set pic-

tures. The data sample is shown in Figure 6. 
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(a)               (b)               (c)                (d) 

Figure 6. Dairy Cow Feeding Data Set 

Note: (a) Eating during the day; (b) not eating during the day; (c) eating at night; (d) not eating at night. 

 

The data annotation software Labelimg was used 

to annotate the cows in the data, and in order to 

identify the cows’ eating behavior, the cows were 

divided into cow eating (eating cows) and cows 

(not eating cows). When cows eat, they stick their 

heads out of the fence to eat. In Figure 5(b), there 

are two states of cows sticking their heads out of 

the fence. The left one is eating, and the right one 

has the desire to eat. For the convenience of the 

experiment, the cows sticking their heads out of 

the fence are marked as eating (cow eating). In 

Figure 5(a), there are three different states of 

cows. For the convenience of the experiment, 

they are all marked as not eating cows. 

2.2.3 Evaluation Metrics 

This experiment uses precision P, recall R, and 

mean average precision mAP to evaluate the 

detection efficiency and performance of the 

YOLOv7-CDD model. The calculation formula is 

as follows: 

P =
TP

TP+FP
              (12) 

R =
TP

TP+FN
                (13) 

AP = ∫ P(R)dR
1

0
              (14) 

mAP =
1

N
∑ APi
N
i=1              (15) 

Where TP is the number of cows that are correctly 

predicted to be eating; FP is the number of cows 

that are incorrectly predicted to be eating; FN is 

the number of cows that are not predicted to be 

eating; AP is the average precision of the 

experiment; N is the number of sample categories. 

3. Experimental Results Analysis 

3.1 Comparative Experiment on Performance of 

Different Attention Mechanisms 

In order to verify the effectiveness of introducing 

CA attention mechanism in YOLOv7 in testing 

the feeding behavior dataset of dairy cows in the 

pasture, SE attention mechanism, EAM attention 

mechanism and ECA attention mechanism were 

used to improve the YOLOv7 model, and the 

same dataset was tested and compared under the 

same experimental environment. The compari-

son results are shown in Table 1. 

 

Table 1. Comparative test of attention mechanisms 

 

In this m Analysis and comparison results show 

that after embedding CA attention, the accuracy 

of the model is 98.3%, which is 2.7%, 2.0%, 1.4%, 

and 1.5% higher than other models respectively; 

the recall rate is 98.0%, which is higher than other 

models. The model improved by 2.3%, 1.4%, 0.5%, 

and 1.3% respectively; the average accuracy-to-

mean ratio was 98.9%, which was improved by 

2.7%, 1.8%, 1.1%, and 1.3% respectively 

compared with embedding other models; and 

embedding CA attention. After force, the 

GFLOPs are larger and the detection speed is 

Model P% R% mAP% Parameter quantity FLOPS/G 

YOLOv7 95.6 95.7 96.2 3.721 ×107 1.051 ×1011 

YOLOv7-SE 96.3 96.6 97.1 3.774 ×107 1.023 ×1011 

YOLOv7-EAM 96.9 97.5 97.8 3.842 ×107 1.102 ×1011 

YOLOv7-ECA 96.8 96.7 97.6 3.741 ×107 1.044 ×1011 

YOLOv7-CA 98.3 98.0 98.9 3.715 ×107 1.055 ×1011 
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faster. Therefore, the effect of YOLOv7-CA on the 

model is more significant. 

3.2 Ablation Experiment 

In order to more comprehensively verify the 

effectiveness of the three improved methods 

proposed in this paper, a series of ablation 

experiments are carried out in the same 

experimental environment and experimental 

equipment. The experimental data are shown in 

Table 2, and the experimental results are shown 

in Figure 7. 

 

Table 2. Ablation experiments 

Model P(%) R(%) MAP@0.5(%) Parameter quantity/M FLOPS/G 

YOLOv7 95.6 95.7 96.2 3.721 ×107 1.051 ×1011 

YOLOv7-CA 98.3 98.1 98.9 3.715 ×107 1.055 ×1011 

YOLOv7-DSConv 98.2 98.1 98.8 3.259 ×107 6.59 ×1010 

YOLOv7-DyHead 98.2 97.7 98.8 3.642 ×107 1.024 ×1011 

YOLOv7-CA+DSConv 98.1 97.9 98.7 3.274 ×107 6.62 ×1010 

YOLOv7-CA+DyHead 98.1 98.2 98.8 3.657 ×107 1.027 ×1011 

YOLOv7-DSConv+DyHead 97.8 98.1 98.9 3.642 ×107 6.84 ×1010 

YOLOv7-CDD 98.4 98.3 99.3 3.657 ×107 6.88 ×1010 

 

 

(a)                    (b)                    (c)                   (d) 

 

 

(e)                   (f)                   (g)                  (h) 

Figure 7. Comparison of detection effects of different algorithms in the same scene 

Note: (a) YOLOv7; (b) YOLOv7-CDD; (c) YOLOv7-CA; (d) YOLOv7-DSConv; (e) YOLOv7-DyHead; (f) 

YOLOv7-CA+DSConv; (g) YOLOv7-CA+DyHead; (h) YOLOv7-DSConv+DyHead. 

 

It can be seen from the above table that the 

accuracy rate of the original YOLOv7 model is 

lower than that of other models. After adding the 

CA attention mechanism based on the YOLOv7 

model, Map@0.5 increased by 2.7 percentage 

points, which improved the accuracy of the 

model and slightly reduced the calculation 

amount, making the model partially lightweight. 

After adding DSConv distributed offset 

convolution, mAP@0.5 increased by 2.6 

percentage points and the number of parameters 

dropped a lot. GFLOPs were significantly 
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reduced and the calculation amount was slightly 

reduced. This shows that adding the module can 

reduce the calculation amount of the model. After 

adding the Dynamic Head dynamic detection 

head, the attention mode is systematically 

considered in the head design to obtain better 

performance, and mAP@0.5 is increased by 2.6 

percentage points. The improved YOLOv7-CDD 

algorithm increased mAP@0.5 by 3.1 percentage 

points, and the number of parameters and the 

number of floating-point operations were 

significantly reduced, indicating that this 

algorithm model takes up less memory resources 

and has better detection performance. 

3.3 Comparative Experiment 

In order to further verify the objectivity and 

effectiveness of the improved YOLOv7-CDD 

network model, different models were compared 

on the same data set under the same 

experimental conditions. Under the same 

configuration environment and training 

parameters, the comparative experimental 

results of the improved YOLOv7-CDD network 

model in this paper and other network models 

are shown in Table 3. 

 

Table 3. Comparative experiments 

Model P(%) R(%) MAP@0.5(%) Parameter quantity/M FLOPS/G 

YOLOv4 94.3 94.8 95.1 6.313 ×107 6.94 ×1010 

YOLOv5 94.7 94.8 95.4 7.174×106 5.99×1010 

YOLOv7 95.6 95.7 96.2 3.721×107 1.051×1011 

YOLOv8 97.9 98.3 99.1 3.006×107 8.9×1010 

YOLOv7-CDD 98.4 98.3 99.3 3.657×107 6.88×1010 

From the analysis of Table 3, we can see that the 

YOLOv7-CDD algorithm proposed in this paper 

has improved all indicators compared with other 

algorithms, and the number of parameters and 

floating-point operations have decreased 

significantly, and the amount of operations is less 

than that of other algorithms. The visualization 

results show that the algorithm proposed in this 

paper makes the model lighter and the model 

detection accuracy is improved, and the 

comprehensive detection effect is better than 

other algorithms. 

4. Conclusion 

This paper proposes the YOLOv7-CDD model 

based on the YOLOv7 target detection model. 

The model adds the CA attention mechanism and 

DSConv distribution offset convolution to make 

the model lighter, and adds Dynamic Head to the 

head, which makes the model more accurate in 

recognizing the behavior of eating cows. The 

accuracy of the improved model is 98.4%, the 

recall rate is 98.3%, and the mAP@0.5 is 99.3%, 

which are all improved compared with the 

original YOLOv7 model. However, although this 

improved model is more lightweight, the 

corresponding FPS will be reduced. In order to 

better optimize the model, in future research, the 

number of FPS frames and the diversification of 

data sets will be further considered to achieve 

more innovative research in the recognition of 

cow eating behavior. 
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Abstract 

The increasing global demand for sustainable and decentralized energy solutions has accelerated the 

adoption of wind-solar hybrid renewable energy systems. These systems offer improved reliability 

and energy availability by leveraging the complementary nature of solar and wind resources. 

However, the inherent variability and nonlinear characteristics of these sources necessitate the use of 

Maximum Power Point Tracking techniques to ensure optimal power extraction under changing 

environmental conditions. This paper presents a comprehensive review of both classical and 

intelligent MPPT algorithms, including Perturb and Observe, Incremental Conductance, Fuzzy Logic 

Control, Artificial Neural Networks, Particle Swarm Optimization, and hybrid approaches. The paper 

critically examines the principles, implementation strategies, strengths, and limitations of each 

method, with a focus on their application in wind-solar hybrid systems. Particular attention is given to 

the integration challenges associated with real-time deployment, control coordination between energy 

sources, convergence stability, and computational overhead. Emerging trends such as IoT-enabled 

control, machine learning integration, and predictive optimization are also discussed. This review 

aims to guide researchers and system designers in selecting and developing MPPT strategies that 

balance efficiency, adaptability, and system complexity for future-ready hybrid renewable energy 

applications. 

Keywords: wind-solar hybrid systems, maximum power point tracking, perturb and observe, 

incremental conductance, artificial neural networks, particle swarm optimization 

 

 

 

1. Introduction 

As the global energy landscape continues to 

shift toward sustainable and decentralized 

power generation, hybrid renewable energy 

systems have gained significant attention as a 

practical and efficient solution to meet growing 

energy demands while minimizing 

environmental impacts. Among various 

combinations of renewable sources, wind-solar 

hybrid systems stand out due to the 

complementary nature of solar irradiance and 

wind patterns. Typically, solar power peaks 

during sunny, clear days, while wind energy can 

be harnessed both during the day and night and 

in conditions where solar resources may be 

limited. This synergy enhances system reliability 

and energy yield, particularly in remote or 

off-grid areas where consistent power supply is 

critical. 

Despite their advantages, wind-solar hybrid 

Journal of Progress in Engineering 

and Physical Science 

ISSN 2709-4006 

www.pioneerpublisher.com/jpeps 

Volume 4 Number 2 April 2025 

 



Journal of Progress in Engineering and Physical Science 

47 
 

systems present unique operational and 

technical challenges. One of the most prominent 

among them is the dynamic and intermittent 

behavior of the energy inputs—solar irradiance 

and wind speed—which directly affect the 

efficiency of energy conversion and utilization. 

The inherent non-linear characteristics of 

photovoltaic panels and wind turbines require 

sophisticated control mechanisms to ensure 

optimal performance. Without proper 

management, these systems risk 

underperformance, energy losses, and reduced 

economic viability. 

To address these issues, Maximum Power Point 

Tracking techniques have become a cornerstone 

in the control strategy of hybrid energy systems. 

MPPT algorithms continuously monitor and 

adjust the operating points of the PV panels and 

wind turbines to ensure that they operate at 

their respective maximum power points under 

varying environmental conditions. This adaptive 

capability significantly improves energy harvest 

and enhances overall system efficiency. 

The implementation of MPPT in hybrid systems 

is particularly challenging compared to 

standalone PV or wind systems. This is due to 

the need for coordinated control of two 

disparate energy sources, each with its own set 

of variables and response characteristics. The 

presence of power electronics—such as DC-DC 

converters and inverters—further complicates 

the system dynamics, requiring real-time, robust, 

and efficient MPPT strategies. The integration of 

battery storage systems adds another layer of 

complexity, especially when MPPT must 

consider load variations and storage capacity in 

real time. 

Recent advancements in computational 

intelligence and control algorithms have led to 

the development of sophisticated MPPT 

methods, ranging from classical approaches like 

Perturb and Observe and Incremental 

Conductance to more advanced techniques 

including fuzzy logic controllers, artificial neural 

networks, particle swarm optimization, and 

hybrid algorithms that blend multiple strategies. 

These innovations aim to improve the speed of 

convergence, reduce power oscillations, and 

adapt to rapidly changing environmental 

conditions with minimal energy losses. 

The increasing role of digital technologies—such 

as the Internet of Things, machine learning, and 

real-time analytics—in the energy sector is 

paving the way for smarter MPPT 

implementations. These technologies enable 

predictive control, remote monitoring, and 

decentralized decision-making, all of which 

contribute to a more resilient and efficient 

hybrid energy infrastructure. 

In this context, a comprehensive understanding 

of MPPT techniques and their implementation 

in wind-solar hybrid systems is essential for 

researchers, engineers, and policymakers aiming 

to optimize renewable energy utilization. This 

review explores the evolution of MPPT 

algorithms, their comparative performance, 

real-world implementation challenges, and 

future directions in the context of hybrid 

renewable energy systems. 

2. Overview of MPPT in Hybrid Systems 

Maximum Power Point Tracking lies at the heart 

of operational efficiency in wind-solar hybrid 

renewable energy systems. These systems 

harness energy from two inherently distinct 

sources—solar photovoltaic modules and wind 

turbines—each subject to nonlinear output 

behaviors that are driven by independent and 

highly variable environmental factors. The 

dynamic nature of these input variables 

necessitates sophisticated control algorithms to 

continuously extract the maximum available 

power from both sources under all operating 

conditions. 

In PV systems, the maximum power point shifts 

according to changes in solar irradiance, 

ambient and cell temperature, and shading 

conditions. This creates a power-voltage curve 

with a single peak, which must be tracked 

continuously to maximize efficiency. Wind 

energy systems, on the other hand, exhibit a 

more complex relationship between output 

power and input conditions. The wind turbine’s 

power output is influenced not only by wind 

speed but also by turbine design parameters 

such as blade pitch, swept area, tip speed ratio, 

and generator characteristics. This results in a 

power curve that often contains multiple 

operating points depending on the control 

method (e.g., fixed speed vs. variable speed 

operation), making MPPT in wind systems 

inherently more complex than in PV systems. 

In a hybrid system where both PV and wind 

subsystems are integrated, the task of MPPT 

becomes multifaceted. Solar and wind sources 

exhibit asynchronous behavior—not only do 

they peak at different times of day or under 
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different weather conditions, but they also vary 

in their response speed to environmental stimuli. 

For instance, solar irradiance may rise and fall 

gradually due to cloud cover, whereas wind 

speed can change suddenly due to turbulence. 

These variations necessitate real-time 

monitoring and dual-source optimization to 

ensure that each energy source operates at or 

near its MPP while minimizing energy loss 

through mismatch or overload. 

The coordination of energy extraction from both 

sources often involves advanced power 

electronic interfaces, such as individual or 

multi-input DC-DC converters, coupled to a 

shared DC bus. In this configuration, the MPPT 

algorithm must manage the operating point of 

each input channel without destabilizing the 

overall system. This is further complicated when 

storage devices such as batteries or 

supercapacitors are introduced, requiring 

dynamic regulation of charge/discharge rates to 

maintain system balance and extend component 

life. Hybrid inverters, capable of managing 

inputs from both wind and solar sources, must 

also integrate MPPT control loops to ensure 

efficient AC output generation while 

synchronizing with grid or load requirements. 

Beyond energy extraction, MPPT also plays a 

crucial role in system-wide performance. 

Efficient MPPT enhances total energy yield by 

keeping subsystems at their optimal 

power-producing states, which reduces the need 

for oversizing and contributes to more compact, 

cost-effective designs. Real-time MPPT 

contributes to operational stability by 

minimizing power oscillations and reducing the 

stress on power electronic components. It also 

ensures that fluctuations in source power do not 

destabilize the DC-link voltage or induce 

harmonic distortion in the AC output, which is 

especially critical in grid-tied and microgrid 

applications. 

Modern MPPT strategies are increasingly 

incorporating elements of artificial intelligence, 

adaptive control, and predictive modeling. 

Techniques such as machine learning-based 

prediction, fuzzy logic control, and 

reinforcement learning are being integrated into 

MPPT frameworks to enable context-aware 

decision-making, self-tuning of control 

parameters, and learning from historical 

performance patterns. These capabilities are 

especially useful in complex operating scenarios, 

such as those involving partial shading in PV 

arrays, gusty wind conditions, or non-linear 

storage dynamics. AI-driven MPPT can also 

anticipate environmental changes based on 

forecasting data, enabling proactive rather than 

reactive optimization. 

These trends reflect a broader shift from rigid, 

rule-based control systems toward autonomous, 

data-driven control architectures capable of 

adapting to the diverse and evolving conditions 

typical of hybrid renewable energy deployment. 

This evolution is critical not only for maximizing 

the immediate power output but also for 

ensuring long-term system resilience, reducing 

maintenance costs, and supporting the 

integration of HRES into smart grids, electric 

vehicle charging networks, and other advanced 

energy infrastructures. 

In conclusion, MPPT in wind-solar hybrid 

systems is far more than a passive optimization 

tool—it is the cognitive layer of modern 

renewable energy systems. As these systems 

scale in both size and sophistication, the role of 

MPPT will expand further, demanding 

algorithms that are not only efficient and 

accurate but also intelligent, resilient, and 

capable of operating in real-world, dynamic 

environments. Future MPPT research and 

implementation must continue to bridge control 

theory, data science, and embedded systems 

design to meet the energy challenges of a 

low-carbon, distributed energy future. 

3. Classical and Intelligent MPPT Techniques 

Maximum Power Point Tracking algorithms are 

at the core of ensuring that hybrid renewable 

energy systems extract the maximum possible 

power from their sources at any given moment. 

In wind-solar hybrid systems, where the power 

output characteristics of each source are 

nonlinear and vary independently, the role of 

MPPT becomes even more critical. Over the 

years, MPPT methodologies have evolved from 

simple, reactive techniques into sophisticated, 

predictive, and adaptive control systems. This 

evolution reflects not only the increasing 

demand for energy optimization under diverse 

and uncertain environmental conditions but also 

the rapid advancement in embedded processing, 

digital control systems, and artificial 

intelligence. 

Classical MPPT techniques have been widely 

implemented in commercial and academic 

projects due to their simplicity, ease of 

integration, and minimal computational 
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demand. Among the most prominent classical 

methods are Perturb and Observe and 

Incremental Conductance. The P&O algorithm 

functions by slightly perturbing the operating 

voltage or current of a PV module or wind 

generator and observing the resulting change in 

output power. If the power increases, the system 

continues to perturb in the same direction; 

otherwise, it reverses the direction of 

perturbation. Although effective under stable 

conditions, P&O struggles with rapid 

environmental changes. It can oscillate around 

the MPP, especially in steady-state conditions, 

leading to minor but persistent energy losses. 

More critically, during fast-changing irradiance 

or wind speed, P&O can be misled into tracking 

the wrong direction, resulting in substantial 

deviations from the optimal operating point. 

The Incremental Conductance method attempts 

to overcome this by comparing the rate of 

change in current (dI) to the rate of change in 

voltage (dV). When dI/dV equals -I/V, the 

system is theoretically operating at its MPP. This 

technique allows for more accurate tracking 

during transient conditions, particularly in solar 

systems, and performs better than P&O when 

irradiance changes are gradual. However, IC 

methods still rely on real-time differentiation, 

which introduces sensitivity to measurement 

noise and requires precise analog-to-digital 

conversion. This can be challenging in 

embedded systems with limited resolution, 

especially when deployed in harsh field 

conditions with fluctuating temperature and 

electromagnetic interference. 

Given these limitations, research has 

increasingly turned toward intelligent MPPT 

algorithms that leverage heuristic, adaptive, and 

bio-inspired approaches. These techniques offer 

enhanced flexibility, noise tolerance, and 

real-time learning capabilities. Fuzzy Logic 

Control is one of the earliest intelligent 

techniques adapted for MPPT. It uses a 

rule-based inference system to process inputs 

such as the change in power and voltage to 

determine the next operating point. FLC does 

not require an explicit mathematical model of 

the system and can operate effectively under 

imprecise, noisy, or incomplete data conditions. 

Its adaptability and fast response make it 

especially useful in environments where input 

parameters change unpredictably, such as 

wind-solar systems with cloud-induced 

variability or gusty winds. 

Artificial Neural Networks represent a 

paradigm shift in MPPT control. Trained using 

historical and simulated data, ANNs are capable 

of identifying complex nonlinear relationships 

between environmental conditions (e.g., 

irradiance, wind speed, temperature) and the 

corresponding maximum power points. Once 

trained, ANNs can infer the optimal operating 

point almost instantaneously, providing 

extremely fast tracking with minimal oscillation. 

However, their implementation presents several 

challenges. The accuracy of an ANN depends 

heavily on the quality and comprehensiveness 

of the training data. Neural networks are 

computationally intensive and 

memory-demanding, which may preclude their 

use in small-scale embedded controllers unless 

paired with specialized hardware like FPGAs or 

AI co-processors. 

Particle Swarm Optimization offers another 

intelligent solution by treating MPPT as a 

multidimensional optimization problem. Each 

“particle” in the swarm represents a candidate 

solution, and particles adjust their positions in 

the search space based on their own experience 

and that of neighboring particles. This approach 

excels in complex and multimodal search spaces, 

such as those encountered in partially shaded 

PV arrays or nonlinear wind turbine response 

curves. PSO is inherently parallelizable and 

robust to local maxima, but it requires careful 

tuning of parameters such as inertia weight and 

acceleration coefficients to balance exploration 

and convergence speed. PSO’s convergence time 

can be slower than that of model-free methods 

under rapidly changing input conditions, unless 

paired with predictive enhancements or 

hybridized with faster algorithms. 

In response to the trade-offs between 

performance and complexity, hybrid MPPT 

algorithms have been proposed to combine the 

strengths of both classical and intelligent 

methods. For example, a system might employ 

P&O under stable weather conditions to 

conserve computational resources, while 

dynamically switching to an ANN or FLC 

controller during high variability. Some systems 

use ANNs to generate initial conditions for PSO 

or GA (Genetic Algorithm) searches, accelerating 

convergence. Others utilize fuzzy logic to 

modulate the perturbation size in P&O, thereby 

reducing oscillations without sacrificing 

simplicity. These hybrid systems provide a 

balance between robustness, speed, and 
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implementability, making them increasingly 

attractive for real-world deployments in hybrid 

energy systems. 

As these intelligent MPPT strategies continue to 

mature, their integration into smart energy 

systems is becoming more seamless through the 

use of IoT, edge computing, and real-time 

analytics. IoT-enabled MPPT controllers can 

collect and transmit environmental and 

operational data for centralized learning or 

predictive modeling. Edge devices can host 

lightweight AI algorithms that continuously 

adapt to localized conditions, enabling 

distributed decision-making and fault tolerance. 

Predictive analytics, driven by weather forecasts 

and load trends, can also feed into MPPT 

systems to preemptively adjust operating points, 

minimizing energy losses during known 

environmental transitions. 

In conclusion, while classical MPPT techniques 

remain valuable for their simplicity, proven 

reliability, and ease of deployment, the future of 

MPPT lies in the intelligent orchestration of 

advanced control techniques. Intelligent and 

hybrid MPPT algorithms not only provide better 

performance in complex and fast-changing 

environments but also align with the broader 

vision of autonomous, adaptive, and efficient 

renewable energy systems. As embedded 

hardware becomes more powerful and 

accessible, and as smart grid infrastructure 

evolves, the widespread adoption of intelligent 

MPPT will become both feasible and necessary 

for the next generation of sustainable energy 

systems. 

4. Algorithmic Integration in Hybrid Systems 

The integration of Maximum Power Point 

Tracking (MPPT) algorithms into wind-solar 

hybrid renewable energy systems (HRES) is not 

merely a technical optimization challenge—it 

represents a complex systems engineering 

problem. It requires the co-design of power 

electronics, embedded control software, and 

energy management strategies to harmonize two 

fundamentally dissimilar and independently 

fluctuating energy sources. Unlike single-source 

PV or wind systems, hybrid configurations must 

accommodate solar irradiance and wind velocity, 

which are uncorrelated in their temporal and 

spatial variations. This makes the optimization 

task multidimensional, with intertwined 

objectives such as real-time tracking, power 

balancing, storage control, and load matching. 

One widely adopted approach to MPPT 

deployment in hybrid systems is the decoupled 

control strategy, wherein solar and wind 

modules are treated as independent energy 

subsystems, each with dedicated converters and 

MPPT logic. This modular approach offers 

implementation flexibility and scalability. For 

instance, solar modules typically use Perturb 

and Observe (P&O) or Incremental Conductance 

(IC) algorithms, given their predictable P–V 

characteristics. Wind systems, however, are 

better suited to algorithms like Tip Speed Ratio 

(TSR), Power Signal Feedback (PSF), or Optimal 

Torque Control, which consider the turbine’s 

mechanical properties and nonlinear 

aerodynamic responses. As emphasized by 

Kumar and Chatterjee, the effectiveness of wind 

MPPT is highly contingent on site-specific 

turbine parameters such as rotor diameter, 

generator inertia, and air density—necessitating 

algorithm tuning or adaptation for each 

deployment environment. 

In more integrated architectures—particularly 

those involving a common DC bus or hybrid 

inverter—a centralized or coordinated MPPT 

strategy becomes necessary. This adds 

considerable complexity, as the MPPT controller 

must not only optimize each input stream but 

also orchestrate system-wide operations such as 

source prioritization, dynamic load sharing, and 

coordinated energy dispatch. For example, 

during midday hours, solar output may exceed 

immediate consumption while wind power 

remains constant. The system controller must 

decide whether to prioritize storing excess solar 

power, curtail it, or allow wind to supplement 

the load depending on battery state-of-charge 

(SoC), load demand patterns, and converter 

capacity. Real-time optimization under such 

constraints demands high-speed 

decision-making, fault tolerance, and predictive 

adaptability. 

To meet these demands, researchers have 

increasingly turned to metaheuristic 

optimization algorithms and soft computing 

approaches that offer flexible, real-time 

adaptability in complex decision spaces. Among 

these, Genetic Algorithms (GAs) are popular for 

their robustness in exploring global solution 

spaces. GAs apply principles of natural 

selection—mutation, crossover, and elitism—to 

evolve optimal controller parameters for MPPT 

in varying environmental contexts. For example, 

GA-based MPPT can fine-tune DC-DC converter 
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duty cycles or wind turbine control parameters 

based on historical irradiance and wind profiles, 

thus maximizing efficiency while avoiding 

oscillatory behavior. 

Adaptive Neuro-Fuzzy Inference Systems 

(ANFIS) represent another powerful class of 

intelligent MPPT tools. Combining the 

human-like reasoning of fuzzy logic with the 

learning capabilities of neural networks, ANFIS 

systems dynamically refine their rule base 

through exposure to operational data. This 

makes them particularly well-suited for hybrid 

systems operating in non-ideal conditions, such 

as partial shading in PV arrays or wind 

turbulence. Unlike static rule-based systems, 

ANFIS can self-improve over time, adjusting to 

aging components, seasonal changes, and 

altered load profiles. 

Particle Swarm Optimization (PSO), inspired by 

collective behavior in natural systems, has also 

been successfully applied in hybrid MPPT 

scenarios. PSO’s strength lies in its balance 

between local search and global exploration, 

allowing it to escape local maxima—a common 

problem in MPPT under complex energy 

landscapes. For instance, in systems subject to 

partial shading or gusty winds, PSO can 

converge on the true global maximum with 

fewer iterations than exhaustive search-based 

methods. 

Roy et al. highlight the multi-objective 

optimization capabilities of these intelligent 

methods, which not only maximize power 

extraction but also stabilize voltage, minimize 

harmonic distortion, regulate battery health, and 

ensure compliance with grid codes. These 

algorithms are robust to sensor noise, 

measurement error, and component 

degradation—making them well-suited for 

real-world deployments. 

The integration of energy storage systems (ESS) 

such as lithium-ion batteries or supercapacitors 

introduces another layer of control complexity. 

MPPT algorithms must now be integrated into a 

larger energy management system (EMS), where 

real-time decisions account for battery SoC, 

charge-discharge efficiency, and thermal 

constraints. In these cases, hierarchical control 

architectures are often used. The lower layer 

comprises fast-acting MPPT controllers that 

optimize individual sources, while upper-level 

supervisory controllers manage system-wide 

objectives such as storage scheduling, peak 

shaving, and grid export control. Techniques 

like Model Predictive Control (MPC), which use 

system models to forecast future states, are 

increasingly deployed at this level to support 

predictive and proactive decision-making. 

As hybrid systems move toward microgrid 

integration, distributed control becomes a 

crucial requirement. Multi-agent systems (MAS), 

where autonomous agents (e.g., wind MPPT, 

solar MPPT, battery controller) communicate 

and collaborate, are gaining traction for 

decentralized, fault-resilient control. Each agent 

can locally optimize its subsystem while 

contributing to global objectives like frequency 

regulation, cost minimization, or energy trading. 

To validate and refine such complex control 

schemes, hardware-in-the-loop (HIL) testing and 

real-time simulation platforms have become 

indispensable. These tools simulate hybrid 

energy environments in real time, enabling 

developers to test MPPT performance across 

diverse scenarios including variable weather, 

load transients, or communication failures. This 

not only accelerates algorithm development but 

also ensures safety and reliability before field 

deployment. 

In conclusion, algorithmic integration of MPPT 

in hybrid wind-solar systems is evolving from 

simple, source-specific optimization to a holistic, 

system-level coordination challenge. As energy 

systems grow more interconnected, intelligent 

MPPT must adapt to increasingly dynamic 

environments, interface seamlessly with storage 

and grid assets, and operate autonomously 

under a wide range of uncertainties. Future 

advancements will likely come from the 

intersection of artificial intelligence, power 

electronics, and distributed control, forming the 

foundation for resilient and intelligent 

renewable energy systems. 

5. Implementation Challenges and Future 

Directions 

Despite their theoretical promise and growing 

adoption, the practical implementation of 

advanced Maximum Power Point Tracking 

algorithms in wind-solar hybrid energy systems 

remains fraught with significant technical and 

systemic challenges. One of the most pressing 

issues is the computational burden posed by 

intelligent MPPT algorithms. Techniques like 

Particle Swarm Optimization, Artificial Neural 

Networks, and Adaptive Neuro-Fuzzy Inference 

Systems require complex calculations, iterative 
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processes, or large datasets for training. These 

algorithms, while accurate and adaptable, are 

often unsuitable for real-time implementation on 

low-cost microcontrollers or digital signal 

processors with limited processing power and 

memory. In field applications, particularly in 

remote or off-grid locations, power electronics 

controllers are usually designed for minimal 

energy consumption and maximum reliability, 

and embedding computationally heavy 

algorithms into such systems may lead to 

performance bottlenecks, slower response times, 

and increased costs. 

In addition to computational load, sensor 

dependency poses another major obstacle. 

Advanced MPPT algorithms typically require 

continuous feedback of system parameters such 

as voltage, current, temperature, irradiance, and 

wind speed. These sensors are vulnerable to 

noise, calibration drift, aging, and 

environmental damage from dust, moisture, or 

temperature extremes. Sensor faults or 

inaccurate measurements can significantly 

distort the algorithm’s perception of the system’s 

state, resulting in suboptimal tracking, increased 

switching activity, or even hardware stress. This 

dependence on accurate sensing necessitates 

robust filtering and diagnostic methods, which 

in turn add to the algorithmic and system 

complexity. 

Stability is another persistent concern. In hybrid 

systems, the interaction between solar and wind 

power sources—each governed by distinct, 

nonlinear characteristics—can lead to complex 

system behavior. Oscillations around the 

maximum power point, hunting phenomena 

due to overcorrection, and erratic behavior 

under rapidly changing environmental 

conditions are commonly observed when 

classical algorithms like Perturb and Observe are 

used. Even intelligent methods, if not well tuned 

or trained for specific site conditions, can lead to 

instability, especially during partial shading in 

PV arrays or turbulent wind events. Hybrid 

energy systems further complicate this with 

power-sharing coordination, load balancing, and 

battery management, all of which impose 

additional constraints that the MPPT controller 

must respect without destabilizing the system. 

Another significant challenge is the convergence 

speed of the MPPT algorithm. In real-world 

conditions where solar irradiance may change 

rapidly due to moving clouds or where wind 

speed fluctuates irregularly, an MPPT algorithm 

must track the new maximum point quickly and 

accurately. Slow convergence not only reduces 

harvested energy but also risks prolonged 

mismatch between generated power and load or 

storage requirements. Faster algorithms, on the 

other hand, often increase switching frequency, 

which can elevate system losses, create 

electromagnetic interference, and shorten the 

lifespan of power electronic components. 

The presence of multiple local 

maxima—especially in scenarios like partial 

shading for PV systems or in wind turbines 

operating across nonlinear aerodynamic 

zones—poses a significant hurdle. Many 

traditional MPPT techniques are designed for 

single-peak curves and can become trapped in 

local maxima, leading to long-term inefficiencies. 

Ensuring that an algorithm can distinguish 

between local and global maxima under all 

environmental conditions requires additional 

logic, exploration mechanisms, or predictive 

capabilities, which can add substantial 

overhead. 

In hybrid systems that incorporate energy 

storage—such as batteries or 

supercapacitors—the MPPT algorithm must also 

consider the real-time status of these elements, 

including state of charge, charge/discharge 

limits, aging, and thermal behavior. Failing to 

incorporate these parameters can lead to 

overcharging, deep discharging, or cycling 

inefficiencies that degrade battery life. The 

MPPT controller must thus be integrated with 

energy management strategies, which increases 

software complexity and requires accurate 

models of battery behavior. 

The structural design of the control architecture 

also poses challenges. Designers must choose 

between decentralized MPPT control—where 

each energy source operates its own 

algorithm—and centralized MPPT, where a 

master controller orchestrates energy flow 

among multiple sources. Each approach has 

trade-offs: decentralized systems can suffer from 

coordination issues and conflicting control 

actions, while centralized systems require 

extensive real-time data exchange and tight 

synchronization between subsystems. 

These challenges highlight the need for more 

resilient, fault-tolerant, and adaptive MPPT 

designs, particularly as hybrid systems become 

more complex and are deployed in diverse 

environments. Future directions are increasingly 
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shaped by the integration of emerging 

technologies such as embedded machine 

learning, Internet of Things connectivity, and 

edge computing. These innovations are enabling 

smarter MPPT algorithms capable of learning 

from past behavior, predicting future energy 

availability, and making context-aware decisions. 

Model predictive control and multi-agent 

architectures are beginning to be explored for 

their ability to manage distributed control tasks 

across hybrid systems and microgrids, offering a 

promising path toward more autonomous and 

robust renewable energy management. 

6. Conclusion 

Maximum Power Point Tracking techniques are 

fundamental to the optimal operation and 

energy harvesting of wind-solar hybrid 

renewable energy systems. As global energy 

systems pivot toward sustainability, 

decentralization, and intelligent control, the 

efficiency and resilience of hybrid energy 

systems increasingly hinge on the performance 

of MPPT algorithms. These algorithms ensure 

that photovoltaic arrays and wind 

turbines—each subject to different and highly 

variable environmental inputs—continuously 

operate at their most efficient points, 

maximizing power output, minimizing energy 

loss, and enhancing the overall stability of the 

system. 

Classical MPPT methods such as Perturb and 

Observe and Incremental Conductance have laid 

the groundwork for real-time control due to 

their ease of implementation, minimal 

computational requirements, and sufficient 

performance under stable environmental 

conditions. However, their inherent 

limitations—particularly oscillatory behavior 

near the maximum power point, poor 

performance under rapidly fluctuating inputs, 

and susceptibility to local maxima—have 

exposed the need for more sophisticated 

solutions. 

To address these limitations, intelligent MPPT 

techniques have emerged as a powerful class of 

solutions. Methods such as Fuzzy Logic Control, 

Artificial Neural Networks, Particle Swarm 

Optimization, and Adaptive Neuro-Fuzzy 

Inference Systems provide superior adaptability, 

faster dynamic response, and the ability to 

operate under noisy or incomplete data 

conditions. These algorithms are especially 

well-suited for the nonlinear and coupled 

dynamics present in hybrid systems where solar 

and wind inputs may interact in complex ways. 

Hybrid algorithms that combine classical and 

intelligent methods are increasingly being 

adopted to strike a balance between 

performance, complexity, and real-time 

feasibility. 

Despite their advantages, the deployment of 

advanced MPPT techniques in practical systems 

is still confronted by numerous challenges, 

including computational load, sensor 

dependency, convergence issues, and stability 

under highly dynamic conditions. These issues 

are further compounded in large-scale or 

off-grid systems where resource constraints, 

communication delays, and hardware 

limitations must also be considered. In addition, 

the integration of energy storage elements and 

coordination with demand-side management 

and grid interaction protocols further elevates 

the importance of robust and adaptive MPPT 

control. 

The evolution of MPPT will likely be shaped by 

the convergence of multiple technological trends. 

The incorporation of embedded machine 

learning and edge computing capabilities is 

expected to enable low-power, intelligent 

controllers that can learn from operational data 

and make context-aware decisions in real-time. 

Predictive control models and digital twins may 

also become integral, allowing systems to 

forecast environmental conditions and 

proactively adjust power flows. The expansion 

of Internet of Things platforms will allow MPPT 

systems to participate in broader energy 

management frameworks, enabling 

interoperability with smart grids, microgrids, 

and distributed energy markets. 

Future research should thus prioritize the 

development of lightweight, scalable, and 

adaptive MPPT algorithms that are not only 

computationally efficient but also robust under a 

wide range of operating scenarios. These 

next-generation algorithms must seamlessly 

integrate data-driven intelligence, forecast-based 

control, and hierarchical energy management 

strategies to ensure that wind-solar hybrid 

systems can reliably and autonomously meet the 

energy demands of a sustainable future. 

References 

Bollipo, R. B., & Mikkili, S. (2020). Hybrid, 

optimal, intelligent and classical PV MPPT 

techniques: A review. IEEE Access. Retrieved 



Journal of Progress in Engineering and Physical Science 

54 
 

from 

https://ieeexplore.ieee.org/abstract/docume

nt/9171659/ 

Chandra, S., Gaur, P., & Srishti. (2018). 

Maximum power point tracking approaches 

for wind–solar hybrid renewable energy 

system—A review. In Soft Computing: 

Theories and Applications (pp. 3–13). Springer. 

Retrieved from 

https://link.springer.com/chapter/10.1007/97

8-981-13-0662-4_1 

Kabalci, E. (2013). Design and analysis of a 

hybrid renewable energy plant with solar 

and wind power. Energy Conversion and 

Management, 72, 51–59. Retrieved from 

https://www.sciencedirect.com/science/artic

le/pii/S0196890413001271 

Kumar, D., & Chatterjee, K. (2016). A review of 

conventional and advanced MPPT 

algorithms for wind energy systems. 

Renewable and Sustainable Energy Reviews, 55, 

957–970. Retrieved from 

https://www.sciencedirect.com/science/artic

le/pii/S1364032115012654 

Kumar, G. B. A., & Shivashankar. (2022). 

Optimal power point tracking of solar and 

wind energy in a hybrid wind solar energy 

system. Environmental Science and Pollution 

Research. Retrieved from 

https://link.springer.com/article/10.1007/s40

095-021-00399-9 

Roy, P., He, J., Zhao, T., & Singh, Y. V. (2022). 

Recent advances of wind-solar hybrid 

renewable energy systems for power 

generation: A review. IEEE Access. Retrieved 

from 

https://ieeexplore.ieee.org/abstract/docume

nt/9684974/ 


