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Abstract 

Machine learning has revolutionized data-driven decision-making, few-shot learning extends its 

capabilities to situations with data scarcity, offering solutions to some of the most pressing challenges 

in various domains. This article review illustrated the recent advances for few-shot learning. 
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1. Introduction 

Machine learning (ML) represents the 

cornerstone of artificial intelligence, enabling 

computers to learn from data and make 

predictions or decisions without explicit 

programming (Jordan, M. I., & Mitchell, T. M., 

2015). The inception of ML can be traced back to 

the mid-20th century, where early pioneers like 

Alan Turing and Marvin Minsky laid the 

groundwork for early AI concepts. However, the 

significant breakthroughs that have defined the 

field occurred with the advent of the digital age. 

This era brought with it enhanced 

computational capabilities, an abundance of 

large datasets, and the development of 

sophisticated algorithms (LeCun, Y., Bengio, Y., 

& Hinton, G., 2015). The emergence of deep 

learning, characterized by deep neural networks, 

revolutionized ML by enabling the modeling of 

complex data relationships and unlocking 

remarkable predictive capabilities. 

Few-shot learning has emerged as a specialized 

subfield of ML, addressing the challenge of 

training models when data is scarce (Fei-Fei, L., 

Fergus, R., & Perona, P., 2006). Traditional ML 

often demands extensive labeled data for 

models to generalize effectively, limiting their 

utility in real-world scenarios where data 

collection is constrained. Few-shot learning 

focuses on techniques that empower models to 

make accurate predictions or classifications with 

a limited number of training examples (Lake, B. 

M., Salakhutdinov, R., & Tenenbaum, J. B., 2015). 

The background of few-shot learning arises from 

the recognition of conventional ML’s limitations 

when faced with data scarcity. Methods such as 

transfer learning, meta-learning, and active 

learning have been developed to mitigate these 

constraints. Few-shot learning holds immense 

promise by expanding the reach of ML, 

particularly in scenarios with limited data. It not 

only reduces the burden of data acquisition and 

annotation but also enhances model 

performance in areas like medical diagnosis, 

rare event detection, and personalized 

recommendation systems (Cheplygina, V., Tax, 

D. M., & Loog, M., 2015). 

In summary, while machine learning has 
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revolutionized data-driven decision-making, 

few-shot learning extends its capabilities to 

situations with data scarcity, offering solutions 

to some of the most pressing challenges in 

various domains. 

2. About Few-Shot Learning 

2.1 Defining Few-Shot Learning and Its Significance 

Traditional machine learning algorithms 

typically require a vast amount of labeled data 

to perform effectively, but many real-world 

scenarios, such as recognizing rare diseases or 

identifying objects in images, involve situations 

where obtaining ample labeled data is 

impractical or unfeasible. Few-shot learning 

(FSL) strives to tackle this issue, providing a 

promising solution to the broader machine 

learning landscape. 

2.2 Common Few-Shot Learning Tasks and 

Applications 

Few-shot learning encompasses various tasks, 

including n-shot classification (where n 

represents the number of training examples), 

one-shot learning (a specific case with n=1), and 

zero-shot learning (where the model predicts for 

classes it has never seen during training). The 

applications of FSL are diverse, spanning 

multiple domains. 

 

Figure 1. The possible application for Few-shot Learnings 

 

Computer Vision: In computer vision, FSL 

facilitates tasks like object recognition and facial 

recognition. It allows systems to identify objects 

or faces with a minimal number of examples, 

reducing the need for extensive labeled data 

(Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, 

D., et al., 2016). 

Natural Language Processing (NLP): In NLP, 

few-shot learning enables models to perform 

tasks such as language translation, sentiment 

analysis, and text generation, even in languages, 

dialects, or domains not encountered during 

training (Devlin, J., Chang, M. W., Lee, K., & 

Toutanova, K., 2018). 

Medical Diagnostics: FSL plays a crucial role in 

medical diagnostics by helping to identify rare 

diseases, detect anomalies in medical images, 

and predict patient outcomes, all of which may 

have limited training data (Raghu, A., Zhang, M., 

Kleinberg, J., Bengio, S., et al., 2019). 

3. Categorizing Existing Few-Shot Learning 

Methods 

Current FSL methods encompass a diverse array 

of strategies, each uniquely tailored to address 

the challenges of learning from minimal data, 

further expanding the horizons of machine 

learning. These strategies can be categorized 

into several main approaches, each offering 

valuable insights and solutions to the problem of 

few-shot learning: 

(1) Metric Learning: Metric learning strategies 

revolve around the critical task of defining a 

suitable distance metric or similarity measure 

between data points. This approach aids models 

in distinguishing between different classes, even 

when they have access to a limited number of 

training examples (Snell, J., Swersky, K., & 

Zemel, R. S., 2017). By optimizing this metric, 

FSL models gain a deeper understanding of the 

relationships between data points, improving 

their ability to make accurate predictions in a 

few-shot scenario. Metric learning has become a 

cornerstone in the development of FSL 

algorithms, providing the foundation for 

effective feature representation and 

classification. 

(2) Meta-Learning: The concept of meta-learning 

is a fundamental shift in the way models are 

trained for few-shot tasks. Meta-learning 

approaches involve exposing models to a 
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diverse range of tasks during their training 

process (Ravi, S., & Larochelle, H., 2017). Instead 

of optimizing solely for a specific task, 

meta-learners are trained to quickly adapt to 

new tasks or classes. By simulating a wide array 

of scenarios, these models learn valuable 

information about how to learn, enabling them 

to generalize efficiently even when faced with 

minimal data. Meta-learning is a promising 

avenue that promotes rapid adaptation and 

generalization, making it a key strategy in FSL. 

(3) Data Augmentation: Data augmentation 

methods focus on enriching the training dataset 

by generating additional samples from the 

limited existing examples (Chen, Z., Kira, Z., 

Wang, Y., & Huang, J., 2019). These methods 

play a vital role in addressing the challenge of 

data scarcity. By creating synthetic variations of 

the available data, data augmentation enhances 

the diversity and richness of the dataset, 

improving the model’s ability to generalize. 

Common data augmentation techniques include 

image rotation, flipping, cropping, and color 

adjustments in computer vision tasks. In natural 

language processing, text augmentation can 

involve synonym replacement, paraphrasing, 

and back-translation. Data augmentation is a 

fundamental strategy to mitigate the effects of 

limited training data and enhance FSL model 

performance. 

(4) Knowledge Transfer: FSL models leverage 

knowledge learned from related or auxiliary 

tasks and transfer it to the current few-shot 

learning scenario, resulting in enhanced 

performance (Xian, Y., Lorenz, T., Schiele, B., & 

Akata, Z., 2018). This approach is particularly 

valuable when there is a scarcity of data specific 

to the target task. By transferring relevant 

knowledge from related domains or tasks, FSL 

models can benefit from pre-existing insights, 

reducing the reliance on limited training 

examples. Knowledge transfer is a strategy that 

aligns with the broader concept of transfer 

learning, allowing FSL models to leverage 

previously acquired knowledge effectively. 

In summary, the classification of FSL methods 

into these distinct approaches underscores the 

versatility and adaptability of this field. Each 

strategy offers unique advantages and insights, 

addressing the challenge of learning from a 

limited number of examples. These approaches, 

whether through optimizing distance metrics, 

promoting rapid adaptation, enriching training 

data, or transferring knowledge, collectively 

contribute to the growing success of few-shot 

learning in diverse domains and applications. 

Indeed, Few-shot learning is a critical field 

within machine learning that empowers models 

to learn effectively from small datasets. Its 

applications in computer vision, natural 

language processing, and medical diagnostics, 

among others, are a testament to its significance 

in real-world problem-solving. Researchers have 

developed various methods to address the 

challenges posed by few-shot learning, offering 

exciting possibilities for addressing data scarcity 

issues. 

4. Challenges in Few-Shot Learning 

Few-shot learning (FSL) presents several notable 

challenges and obstacles, limiting its widespread 

adoption and effectiveness in machine learning 

applications. Three primary challenges are 

outlined below. 

Data Scarcity: One of the most significant 

challenges in FSL is the scarcity of labeled 

training data. Most FSL scenarios involve 

dealing with a small number of examples per 

class, making it difficult for models to learn 

robust and accurate representations. This data 

scarcity often results in overfitting, where 

models struggle to generalize to unseen 

examples, limiting their practicality (Chen, Z., 

Kira, Z., Wang, Y., & Huang, J., 2019). 

Semantic Gap: FSL often requires models to 

understand and differentiate between highly 

complex and abstract concepts with minimal 

data. This poses a significant challenge in 

bridging the semantic gap between the limited 

training data and the diverse concepts 

encountered during testing. FSL methods need 

to find efficient ways to transfer knowledge and 

capture the essence of these concepts (Lake, B. 

M., Salakhutdinov, R., & Tenenbaum, J. B., 2015). 

Zero-Shot Learning: While FSL tasks aim to 

handle scenarios with a small number of 

examples, zero-shot learning (ZSL) extends the 

challenge further. In ZSL, models must 

recognize classes or concepts for which they 

have never seen any training examples. Bridging 

the gap between seen and unseen classes in ZSL 

remains a significant challenge (Xian, Y., Lorenz, 

T., Schiele, B., & Akata, Z., 2018). 

Addressing these challenges in FSL requires 

innovative techniques, such as better data 

augmentation, improved feature representations, 

and the development of novel algorithms 
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capable of learning from few examples 

efficiently. 

5. Applications Across Domains 

5.1 Computer Vision 

In the vast landscape of computer vision, the 

challenge of training models on limited data is 

persistent. Few-shot learning serves as a remedy, 

especially for tasks like object recognition where 

traditional methods require vast datasets. 

Vinyals et al.’s Matching Networks (2016) 

illustrated how to utilize an attention 

mechanism to weigh the importance of support 

set samples. Santoro et al.’s research (2016) on 

memory-augmented neural networks 

showcased how external memory can aid 

one-shot learning. Furthermore, Finn et al.’s 

model-agnostic meta-learning approach3 

highlighted the benefits of fast adaptation across 

different tasks, setting a foundation for 

numerous applications in vision tasks (Finn, C., 

Abbeel, P., & Levine, S., 2017). 

5.2 Natural Language Processing (NLP) 

The intricate patterns in languages make NLP a 

challenging domain. FSL assists in tasks where 

labeled data, especially for low-resource 

languages, is limited. QANet (Adams Wei Yu, 

David Dohan, Minh-Thang Luong, Rui Zhao, 

Kai Chen, Mohammad Norouzi & Quoc V. Le., 

2018) is one such innovation that combined local 

convolution with global self-attention 

mechanisms for reading comprehension. 

Another remarkable shift was the adaptation of 

pre-trained models like BERT for few-shot tasks 

(Sun, C., Qiu, X., & Huang, X., 2019). Gu et al. 

provided insights into meta-learning for 

low-resource neural machine translation, 

emphasizing the potential of FSL in bridging 

language barriers (Jiatao Gu, Yong Wang, Yun 

Chen, Victor O. K. Li & Kyunghyun Cho, 2018). 

5.3 Biomedical Detection 

In the biomedical domain, accuracy and 

reliability are paramount. The diagnosis of rare 

diseases presents a significant challenge due to 

the lack of ample labeled data. Zhang et al.’s 

deep learning approach (Zizhao Zhang, Pingjun 

Chen, Mason McGough, Fuyong Xing, Chunbao 

Wang, Marilyn Bui, Yuanpu Xie & Manish 

Sapkota, 2017) for whole-slide cancer diagnosis 

showcases the capabilities of AI in this domain. 

Beyond cancer detection, FSL has ventured into 

gene expression studies (Zitnik, M., Nguyen, F., 

& Wang, B., 2019), where it aids in discerning 

patterns from minimal datasets. Also, the 

analysis of MRI images, as explored by 

Jamaludin et al. (2017), leveraged FSL for better 

patient diagnosis with limited samples. 

5.4 Finance 

The financial world, with its intricate dynamics, 

stands to gain significantly from FSL. Traditional 

financial models often require extensive 

historical data. However, FSL methods, like the 

LSTM-based approach by Chen et al. (2015), 

show potential in predicting stock returns from 

limited data. Douzas and Bacao’s work on credit 

scoring (2019) highlighted the importance of FSL 

in assessing individual credit risk. Additionally, 

the exploration of deep learning in 

understanding price formation in financial 

markets by Sirignano and Cont (2019) opens 

new avenues for few-shot learning in finance. 

5.5 Applications in Other Domains 

Robotics: In the realm of robotics, few-shot 

learning plays a crucial role, especially in tasks 

like robotic manipulation and navigation. The 

ability of robots to quickly adapt to new tasks 

with minimal demonstrations is pivotal. For 

instance, research by Duan et al. (2017) 

demonstrates how reinforcement learning can 

be coupled with few-shot techniques to teach 

robots new skills with minimal demonstrations. 

Agriculture: Modern agriculture leverages 

technology to optimize yields and manage 

resources efficiently. Few-shot learning aids in 

identifying rare pests or diseases in crops from 

limited samples, as illustrated by Wang et al. 

(2020). This ensures timely interventions, 

minimizing crop loss. 

Audio Processing: Few-shot learning finds its 

applications in audio processing for tasks like 

speaker identification and rare sound detection. 

Using limited data, models can be trained to 

recognize unique voices or rare audio events, as 

researched by Koch et al. (2015). 

Gaming: In the gaming world, few-shot learning 

aids in developing non-player characters (NPCs) 

that can adapt to players’ strategies with 

minimal interactions. This dynamic adjustment 

provides gamers with continually challenging 

environments, as highlighted by Justesen et al. 

(2019). 

6. Conclusions and Future Outlooks 

Few-shot learning (FSL) represents a paradigm 

shift in machine learning, offering a powerful 

solution to the pervasive issue of data scarcity. 
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The significance of FSL lies in its ability to 

empower models with the capability to make 

accurate predictions or classifications with just a 

handful of training examples. This stands in 

stark contrast to traditional machine learning, 

which typically relies on abundant labeled data. 

The relevance of FSL is underscored by its broad 

applications, from computer vision and natural 

language processing to medical diagnostics. 

The strategies in FSL encompass various 

approaches, each tailored to different tasks. 

Metric learning, for instance, revolves around 

defining an effective similarity measure between 

data points. In contrast, meta-learning trains 

models to adapt swiftly to new tasks, offering a 

solution to the problem of transferring 

knowledge. Data augmentation techniques 

generate additional training samples, enriching 

the dataset and promoting improved 

generalization. Knowledge transfer leverages 

insights gained from related or auxiliary tasks to 

enhance performance. FSL bridges the gap 

between traditional machine learning and 

scenarios marked by data scarcity. 

However, FSL is not without its challenges. Data 

scarcity remains a formidable obstacle as models 

need to generalize effectively from a meager 

number of training examples. The semantic gap 

between limited training data and complex, 

abstract concepts encountered during testing 

poses a critical challenge that demands 

innovative solutions. Furthermore, zero-shot 

learning, an extension of FSL, elevates the 

complexity by requiring models to recognize 

classes they have never seen during training. 

Despite these challenges, recent advances have 

shown great promise. 

The field of FSL is on the cusp of transformative 

developments. Researchers are exploring 

innovative techniques and technologies to 

address the current challenges and unlock new 

possibilities. One promising avenue is the 

integration of reinforcement learning with FSL. 

This combination can empower models to make 

sequential decisions based on minimal data, 

opening doors to applications in robotics, 

autonomous systems, and decision-making 

scenarios. The utilization of reinforcement 

learning algorithms like Proximal Policy 

Optimization (PPO) and Trust Region Policy 

Optimization (TRPO) holds the potential to 

revolutionize FSL. Additionally, the adoption of 

unsupervised and self-supervised learning 

techniques is gaining momentum in FSL. 

Models trained without explicit human-labeled 

data can learn rich representations and exhibit 

improved generalization. Self-supervised 

learning approaches, where the model generates 

its own labels, are particularly promising in 

scenarios where labeled data is scarce. 

Furthermore, the evolution of generative models, 

such as Variational Autoencoders (VAEs) and 

Generative Adversarial Networks (GANs), 

offers exciting possibilities for data 

augmentation and synthetic data generation. 

These models can bridge the data gap by 

producing realistic samples that augment 

few-shot datasets, ultimately improving model 

performance. 

Federated learning, an emerging paradigm in 

machine learning, is also expected to have a 

significant impact on FSL. In federated learning, 

models are trained locally on user devices, 

preserving data privacy. This decentralized 

approach can be harnessed to address data 

scarcity challenges while respecting privacy 

concerns. 

As FSL continues to evolve, the synergy between 

these advancements is poised to drive the field 

forward. We anticipate that the combination of 

reinforcement learning, unsupervised learning, 

generative models, and federated learning will 

pave the way for robust and highly efficient FSL 

algorithms. 

In conclusion, the potential of FSL is boundless. 

With continual innovation and the integration of 

cutting-edge techniques, FSL is set to make a 

profound impact in fields where data scarcity is 

a common challenge, revolutionizing the way 

machine learning operates in real-world 

scenarios. The journey to unlock the full 

potential of FSL has just begun, and the future 

holds exciting opportunities for both researchers 

and practitioners. 
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