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Abstract 

With the widespread utilization of meteorological data across diverse fields, the imperative for 

ensuring its security and safeguarding privacy has escalated. Meteorological data encompasses a 

wealth of sensitive information, including frequency bands and the precise locations of sensing 

devices. Inappropriate handling of this data may engender profound ramifications for multiple 

stakeholders. Particularly in the face of severe catastrophic weather conditions, the conundrum of 

optimizing the analysis and transmission of critical meteorological data within the confines of finite 

resources and time constraints looms large, demanding immediate attention from researchers. This 

paper centralizes its focus on the analysis and storage of information derived from common 

meteorological devices, proposing a priority-weighted encryption strategy. Within this strategy, 

meteorological data attains the utmost degree of privacy attainment while concurrently improving 

encryption efficiency, even when faced with the stringent limitations of limited resources and time 

constraints during severe catastrophic weather events. 
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1. Introduction 

In light of the swift advancements in modern 

technology, the acquisition, retention, and 

transmission of meteorological data have grown 

in frequency and sophistication. Particularly in 

the forecasting and response to significant 

catastrophic weather events, such as typhoons, 

earthquakes, and floods, there is an exigent 

demand for the swift collection and 

dissemination of copious volumes of personal 

and collective data. This is essential to support 

rescue operations and guarantee the safety of 

individuals’ lives and property. Nonetheless, this 

data frequently encompasses a significant trove 

of meteorological privacy information. The 

challenge at hand is to ensure a swift and 

precise rescue response while simultaneously 

safeguarding this sensitive data from unlawful 

exploitation or disclosure. This has evolved into 

an immediate and pressing issue requiring 

resolution. 

Meteorological disasters are characterized by 

their abrupt onset, time sensitivity, and 

extensive scope. These attributes render 

traditional data privacy protection methods 

inadequate in fulfilling the demands for real-
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time responsiveness and efficiency during 

disaster mitigation. Hence, the implementation 

of efficacious privacy protection strategies, while 

simultaneously ensuring the fluidity of data, 

presents not only a technical hurdle but also 

encompasses a multitude of societal, legal, and 

ethical considerations. 

The collection, storage, processing, and 

utilization of meteorological data encompass a 

substantial volume of confidential information 

and sensitive data, including frequency bands, 

geographical coordinates, and radio sensing 

device performance. The inappropriate handling 

of this information could potentially yield 

profound repercussions for the welfare of 

nations, societies, businesses, and individuals. 

Furthermore, as the domains of meteorological 

data applications undergo continuous expansion, 

the concomitant escalation in data security risks 

becomes increasingly conspicuous. Incidents 

involving data breaches, tampering, and other 

security vulnerabilities occur with notable 

frequency, thereby presenting substantial perils 

to diverse stakeholders. Consequently, the 

development of a robust meteorological data 

privacy protection strategy to safeguard data 

security emerges as a paramount research 

imperative. 

Within the array of data security protection 

technologies, encryption technology assumes a 

pivotal role in fortifying data security, primarily 

due to its robust security features and practical 

applicability. Encryption technology leverages 

intricate mathematical algorithms to convert 

plaintext data into ciphertext, rendering it 

decipherable solely by individuals in possession 

of the decryption key. This methodology 

significantly mitigates the potential for improper 

data usage. Encryption technology assumes a 

pivotal role in enhancing meteorological data 

security by effectively thwarting interception 

and tampering during data transmission, 

thereby safeguarding data integrity and 

reliability. Furthermore, encrypting 

meteorological data can prevent unauthorized 

access during storage, processing, and 

application phases, thereby ensuring data 

privacy. 

Notwithstanding the substantial contribution of 

encryption technology to meteorological data 

security, practical challenges persist. These 

encompass constraints related to the limited 

resources available on the devices where 

encryption algorithms are deployed, the 

intricacy of algorithm structures, and 

considerations regarding the efficiency of 

encryption and decryption processes. These 

challenges encumber the widespread 

application of encryption technology in the 

realm of meteorological data security. 

In this context, this paper introduces the Level 

Priority Protection (LPP) model, specifically 

designed for the encryption of various data 

fields within meteorological devices when 

confronted with major catastrophic weather 

conditions. Within the constraints of limited 

resources and time, the paper presents an 

encryption strategy aimed at maximizing 

privacy preservation within stringent time 

limitations. 

The primary objective of the LPP model is to 

optimize the privacy attainment within stringent 

time constraints. The model is based on the 

assumption that data encryption during 

transmission is inherently secure and data 

storage is adequately protected. This approach 

ensures the overall security of information 

transfer while concurrently augmenting 

encryption efficiency. The combined effect 

enhances privacy protection while operating 

within the confines of limited device resources 

and time limitations. 

The remainder of this paper is structured as 

follows: Section 2 provides a comprehensive 

review of pertinent literature concerning privacy 

protection. Sections 3 and 4 delineate the LPP 

model and the associated algorithms introduced 

in this study. Following that, Section 5 will 

present the outcomes of simulation experiments. 

Ultimately, Section 6 will encapsulate the key 

findings and conclusions drawn from this paper. 

2. Related Work 

Amidst the relentless technological 

advancements, privacy protection 

methodologies have found extensive application 

within the realm of meteorology. In the exigent 

scenario of major catastrophic weather events, 

the confluence of ensuring prompt and precise 

responses for rescue operations while 

concurrently shielding sensitive meteorological 

data from unauthorized access or disclosure 

represents a formidable societal challenge. 

Vijayarani S, Dhayanand S & Phil M (2015) 

introduced a robust key management and 

encryption approach employing attribute-based 

encryption to grant multiple users authorized 

decryption capabilities through designated keys. 
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This method serves as a safeguard against the 

collusion of multiple users seeking 

unauthorized access to private information. 

Mythri G & Jayram B G (2017) presented a 

framework designed to enhance data access 

control, with a focus on aspects such as 

confidentiality, data revocability, dynamic data 

access, and overall data security. Servers can be 

local or cloud-based for storing and analyzing 

system information. Servers can be local or 

cloud-based for storing and analyzing system 

information (Al Ameen M, Liu J & Kwak K, 2012; 

Liang X, Zhang K, Shen X, et al., 2014). Guo C, 

He GH, Tian Z, et al. (2018) explored the 

approach of encrypting data prior to its storage 

in cloud services. While this method effectively 

mitigates privacy leakage concerns, it introduces 

supplementary costs related to communication, 

storage, and computational overhead during 

data retrieval and query processes. Current 

solutions fall short of fulfilling user 

requirements for encrypted searches across 

multiple sources of meteorological data. A novel, 

secure, and efficient searchable symmetric 

encryption scheme is introduced to address this 

issue. This scheme not only satisfies users’ needs 

for encrypting and searching multi-source data 

but also guarantees that adversaries cannot 

access the distribution information of user 

documents and search results within each data 

source. Therefore, it can effectively ensure the 

privacy and security of user data. Guo L, Zhang 

C, Sun J, et al. (2012, 2013) introduced an 

identity authentication system founded on 

privacy-protected attributes, enabling user 

authentication based on these attributes while 

concurrently preserving their privacy. 

The previously mentioned studies analyze and 

discuss a range of encryption strategies in 

various work environments as proposed by 

previous scholars. Nonetheless, these studies do 

not incorporate crucial considerations related to 

privacy weighting and levels. Within distinct 

meteorological systems, Jacobsson A, Boldt M, 

and Carlsson B (2016), Savola R M, Savolainen P, 

Evesti A, et al. (2015), and Tai H, Celesti A, Fazio 

M, et al. (2015) have proffered risk analysis 

recommendations and have engaged with 

privacy security challenges in significant works 

(Arabo A, Brown I, and El-Moussa F, 2012; 

Hernández-Serrano J, Muñoz J L, León O, et al., 

2018; Weber R H, 2011). Furthermore, 

Hernández-Serrano J, Muñoz J L, León O, et al. 

(2018) presented a coherent approach for 

incorporating the outcomes of privacy-related 

risk assessments into the entire software 

development lifecycle, thereby reinforcing 

privacy security via judicious allocation. 

With the ongoing expansion in both the quantity 

and diversity of meteorological data, privacy 

concerns have assumed paramount importance 

within the meteorological industry. This paper 

centers its focus on the application of apt 

encryption strategies grounded in privacy 

weighting factors, particularly within the 

domain of severe catastrophic weather scenarios. 

It seeks to establish robust measures for securing 

the transmission of meteorological equipment 

information, minimizing the risk of privacy 

breaches, fortifying the safeguarding of high-

privacy-level data, and expediting the 

encryption of high-level information. 

3. Proposed Model 

Chapter 2 of this paper introduced the LPP 

Model and presented an overview of the 

underlying framework. The subsequent chapter 

will delve deeper into problem definition. 

3.1 Problem Definition 

In this paper, the primary research challenge is 

delineated as the Maximization of Privacy 

Weight (MPW) problem, which will be 

expounded upon in Definition 1. 

Definition 1 (MPW Problem): The input consists 

of data types iD ; the data volume for each data  

type
iDN ; the privacy weight 

n

Di
W  for each data  

type in a low-security mode the computational 

cost 
n

Di
C  associated with each data type, the  

privacy weight 
e

Di
W ; and the computational cost  

e

Di
C  in a high-security mode, along with a  

configuration constraint sC . The desired output  

is the maximization of privacy weight. 

The objective of the problem is to optimize the 

privacy weight value within temporal 

constraints. 

In Definition 1, the common input data includes  

data types iD  and the quantity 
iDN  for each  

data type.  

Moreover, the paper primarily emphasizes the 

utilization of encryption strategies rooted in 

privacy weight factors. Consequently, it 

contemplates two operational modes: the high-

security mode and the low-security mode. 
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Under this working paradigm, data 

characterized by high privacy concerns and 

elevated risk can be stored in the high-security 

mode, whereas public data, such as general 

information, is allocated to the low-security 

mode. 

1) In the high-security mode, the input data 

encompasses 
e

Di
C  for each data type, along with  

the corresponding privacy weight 
e

Di
W .  

Computational cost constraints can be any 

restrictions on  

resources or conditions, such as different 

encryption algorithms 
e

Di
P  or time constraints 

e

Di
T . 

2) In the low-security mode, the input data 

encompasses 
n

Di
C  for each data type and the  

privacy weight 
n

Di
W  for each data type, and  

similar constraint conditions can be applied. 

In this paper, privacy weight is characterized as 

a metric quantifying the degree of privacy or 

privacy protection, with the numerical value of 

the privacy weight positively correlating with 

the level of privacy protection. 

The paper uses P  to represent the highest 

privacy weight achieved after applying the 

encryption strategy. In the high-security mode, 

the number of data or data packets for data type 

iD  is 
e

Di
N , while in the low-security mode, it is 

n

Di
N . Thus, 

n

D

e

DD iii
NNN += . Equation (1) 

represents the calculation method for P: 


==

+=
0)(1)( is

n

D

n

D

is

e

D

e

D iiii
WNWNP        (1) 

The paper uses COST  to represent the total 

computational cost, and C  represents the 

configuration constraint, such as temporal 

constraints sT , which are used to represent time  

constraints. Equation (2) represents the formula 

for the total computational cost, with the 

configuration constraint consistent with 

constraint conditions: 


==

+=
0)(1)( is

n

D

n

D

is

e

D

e

D iiii
CNCNCOST     (2) 

Where the range of values for C is 
sCCOST 0 . 

3.2 Level Priority Protection Model (LPP) 

 

Figure 1. Level Priority Protection Model (LPP) 

 

The structure of the LPP model is shown in 

Figure 1. 

The primary encryption approach outlined in 

this paper follows these steps: initially, data is 

identified, and the privacy weight for each data 

point is established. Subsequently, the data is 

grouped into distinct tiers based on their 

respective privacy weights. Generally, data with 

privacy weights ranging from 0 to 1 are 

allocated into four levels: Level I (0, 0.1, 0.2), 

Level II (0.3, 0.4, 0.5), Level III (0.6, 0.7, 0.8), and 

Level IV (0.9, 1.0). Different levels of encryption 

measures are then applied to data of varying 

levels, such as Level I (no encryption), Level II 

(partial encryption), Level III (partial 

encryption), and Level IV (full encryption). For 

low-level data that can be matched with a threat 

model, one of the data is elevated by one level, 

giving priority to encrypting higher-level data. 

For data with long byte lengths but high privacy, 
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data masking techniques are employed. 

The Level Priority Protection Model is designed 

to optimize the achievement of maximum 

privacy within a constrained timeframe. 

Privacy attainment denotes the device’s 

responsiveness to data encryption in terms of 

time and resource constraints in typical 

scenarios. Hence, the extent of data privacy 

protection within a restricted timeframe is 

termed “privacy attainment” when the device’s 

computational capacity is restricted. 

The principal elements of the model during the 

encryption process encompass data extraction, 

Data Privacy Security Rating (DPSR), and the 

implementation of data masking techniques. 

In the first part of LPP, data extraction involves 

identifying the data, i.e., categorizing data based 

on security classification. Security classification 

refers to the privacy weight associated with each 

data type during the configuration process. 

This paper defines CODP identification as the 

pairing of data or data types that have the 

potential to compromise an individual’s privacy 

upon review. In essence, when an attacker 

acquires two data elements or data packets, it 

may lead to a privacy breach, whereas if the 

attacker obtains only a single data element or 

data packet, it would not result in a compromise 

of the user’s privacy. Any pair of data elements 

or data packets meeting this criterion qualifies 

as CODP identification. For instance, within 

meteorological data, station information and 

rainfall measurement data are two data types 

that could potentially lead to the exposure of 

meteorological privacy; therefore, they are 

considered a paired set.  

As outlined in Definition 2, CODP needs to be 

identified in the initial stage. Paired data for 

CODP identification is derived from the original 

dataset, and subsequent adjustments are made 

to ascertain the pairing of two data elements 

through collision operations. This paired status 

resulting from collision operations is referred to 

as Data Collision (DC). 

Definition 2: ∃ two pieces of data or data packets 

1D  and 
2D . Simultaneously obtaining 

1D  and 
2D  

an compromise a user’s privacy, but an attacker 

accessing one of 
1D  or 

2D  will not lead to a 

privacy leak, so 
1D  and 

2D  are referred to as 

CODP. 

The second phase of LPP, known as Data 

Privacy Security Rating (DPSR), concerns the 

determination of privacy importance assigned to 

each data type during the configuration process. 

This section will proceed to conduct an in-depth 

analysis of the pertinent aspects of Data Privacy 

Security Rating. 

Data Privacy Security Rating (DPSR) serves as a 

metric for evaluating the extent of data exposure 

risk by taking into account the susceptibility of 

data to privacy threats and the efficacy of 

encryption strategies in place. Each data type is 

assigned a corresponding score, directly 

mirroring the potential risk of data exposure 

and its repercussions, particularly in the context 

of significant meteorological disasters. The 

outcomes are subsequently classified into four 

tiers, denoted as Level I (0, 0.1, 0.2), Level II (0.3, 

0.4, 0.5), Level III (0.6, 0.7, 0.8), and Level IV (0.9, 

1.0). These levels, namely, Level I, Level II, Level 

III, and Level IV, correspond to the categories of 

low, low to moderate, medium, and high. In 

Table 1, you can find an analysis of the overall 

risk level based on the data’s impact and the 

probability of leakage. 

Table 1. Comprehensive Risk Assessment Considering Data Impact and Leakage Probability 

Leak Probability 

Impact 
Low Low to Moderate High 

High Medium High Critical 

Medium Medium Medium High 

Low to Moderate Low Low Medium 

Low Low Low Medium 

 

The third component of LPP entails the 

application of data masking techniques. 

When analyzing big data, particularly those 

containing sensitive information or extensive 

data byte sizes, it becomes essential to apply 

data masking in accordance with system 
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regulations. This ensures that the data can be 

used for testing, development, and other 

purposes. In the context of meteorological data, 

sensitive information like station locations and 

measurement methods necessitates data 

masking to effectively safeguard meteorological 

privacy. 

Data masking is a method used to transform 

data that contains sensitive information into 

data with reduced or no privacy implications. 

This typically involves concealing or modifying 

data elements that could potentially disclose 

sensitive details, such as station information. 

Numerous algorithms are available for data 

masking, with commonly employed methods 

encompassing techniques such as masking, 

rounding, substitution, truncation, among 

others. 

The above description outlines the fundamental 

procedure of the LPP model, aimed at 

prioritizing the encryption protection of high-

level data. This objective is in line with the 

imperative of enabling swift and precise 

responses during severe weather-related 

disasters, while simultaneously securing 

meteorologically sensitive data against 

unauthorized access or disclosure. The 

subsequent section will elaborate on the threat 

model. 

3.3 Threat Model 

In the threat model, we assume that attacker A 

can monitor all wireless communication. In 

other words, when data captured is 

unencrypted or is of importance, A may have 

visibility into meteorological sensitive data, and 

this data is only protected at a low-security level. 

Assuming the leaked privacy is  qp DD , , we  

use → qp DDA ,  to denote privacy leakage  

occurring due to an attack initiated by A. 

Assuming the proposed model has been 

implemented, the transmitted data is paired 

through DC pairing. This means that at least one 

data is encrypted or in a higher security state. 

Encrypted data is represented as 
iD̂ , and,  

therefore,  qp DD ,  will have the following state  

 qp DD ,ˆ  qp DD ˆ,  qp DD ˆ,ˆ  after the DC  

operation. In this state, → qp DDA ,  cannot be  

realized. Additionally, some other data operate 

at higher security levels, depending on the 

constraint conditions, and thus, the model can 

effectively handle such threats. 

4. Related Algorithms 

4.1 Grading Algorithm 

The grading algorithm is utilized for data 

identification and classification, assigning them 

to various levels based on their respective 

weights. The primary objective of this algorithm 

is to ascertain the data or data packets’ specific 

level and subsequently apply distinct encryption 

methods, including the determination of 

whether data masking is necessary. The inputs 

for this algorithm include the M-Table and A-

Table, and its output yields a modified M-Table, 

referred to as M-Table’. Notably, this algorithm 

incorporates the CODP identification concept 

outlined in Definition 2, and the A-Table is 

employed to manage data collisions. Algorithm 

4.1 provides the pseudocode for the grading 

algorithm. 

The main stages of Algorithm 4.1 include: 

1) Input the initial data weight table M-Table 

and the pre-defined A-Table. 

2) For all data Di in M-Table, find the paired 

data Dj for Di in A-Table and represent this 

pairing as Di↔Dj. The pairing rules follow 

Definition 2. 

3) Determine if data Dj is in the mapping table 

M-Table to decide if the weight needs to be 

modified. When Dj is in M-Table, the weight 

value needs to be modified. 

4) Compare the weight values of Di data in M-

Table. When 0.9 ≤ iDW
 ≤ 1.0, assign an infinite 

value to iDW
; when 0.3 ≤ iDW

≤ 0.8, assign a finite 

value to iDW
; when 0 ≤ iDW

 ≤ 0.2, assign an 

infinitely small value to iDW
. 

5) After all data is processed and updated, 

output the modified table M-Table’. 

The time complexity of the grading algorithm is 

T(n) = O(n). This algorithm serves as a precursor 

to the LPP model and aims to enhance the level 

of meteorological data privacy protection 

through priority-weighted encryption in the 

event of catastrophic weather conditions. The 

next subsection will introduce partial encryption 

algorithms. 

 

Pseudocode for the grading algorithm is as 

follows: 
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Input: M-Table，A-Table 

Output: M-Table’ 

1: for ∀ Di in M-Table do 

2:    if Di is in A-Table then 

3:      Get the pairs matching（Di↔Dj） 

4:      if Dj is in M-Table then 

5:       if 0.9≤ iDW Di≤1.0 then 

6:        iDW = +
 

7:        else if 0.3≤ iDW ≤0.8 

8: 
iDW n=

 

9:        else 

10: 
iDW = −

 

11:        end if 

12: end if 

13: end if 

14: end if 

15: end for 

 

4.2 Partial Encryption Algorithm 

The partial encryption algorithm is designed as 

a privacy protection strategy that combines time 

constraints, privacy weight, and byte length. The 

inputs include M-Table’, S-Table, N-Table, byte 

length threshold Ti, and the output is the data 

encryption strategy plan P, indicating which 

data packets need partial encryption. The 

purpose of this algorithm is to take the M-Table’ 

obtained through the grading algorithm and 

determine which data should undergo partial 

encryption, thus reducing the encryption time 

and improving efficiency. The main steps of the 

partial encryption algorithm are as follows: 

1) Input the time constraints Tc and M-Table, N-

Table, and initialize the data set P to an empty 

set. 

2) Use a For loop to set all data segments with 

byte counts greater than Ti to encrypt any 

total byte count

2
 byte data. 

3) Use an If statement to add data packets with 

iDW
 as +∞ to the P set. 

4) Output the collection P consisting of data 

packets from the Di group. All data packets in 

the P set will undergo encryption. 

Pseudocode for the partial encryption algorithm 

is as follows: 

Input: M-Table’, N-Table, byte length 

threshold Ti 

Output: P 

1: P  

2:    if Di is in N-Table then 

3:      for iDN Ti＞  then 

4: 
       2

i

i

D

D

N
N 

 

5:        if +
iDW   then 

6:         
iDP  

7:       end if 

8: end for 

9:    end if 

 

5. Experiment and Simulation 

Given the swift acquisition and dissemination of 

substantial meteorological data for forecasting 

and responding to severe weather events, a task 

vital for safeguarding lives and property, the 

significance of data encryption in the 

meteorological domain is abundantly clear. The 

encryption strategy employed in this study 

begins by encrypting data in accordance with 

privacy grades as dictated by societal 

requirements. Subsequently, for highly sensitive 

data with extensive byte counts, data masking 

techniques are employed to decrease encryption 

time and enhance encryption efficiency, 

consequently elevating the level of privacy 

protection. 

In this section, we perform a series of 

experiments and simulations utilizing ground-

based observations, upper-air meteorological 

data, and other relevant sources. These 

experiments are primarily focused on the 

comparative analysis of encryption algorithms 

from two distinct perspectives: 

The first approach involves encrypting data 

packets based solely on their individual weights, 

without regard to their influence on weight 

distribution during execution. 

The second approach focuses on encrypting data 

packets according to their contribution to the 

weight coefficient within a designated unit of 

time. This method determines encryption 

quality by evaluating the weight ratio, which 

represents the proportion of encryption weight 
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in relation to the total weight. 

In the simulation experiments, the objective is to 

optimize privacy attainment within a 

constrained time frame. 

 

Figure 2. Comparative Time Analysis of Two Encryption Methods for High-Level Data under the RSA 

Algorithm: A Study across Six Data Groups 

 

Figure 2 compares the time required to prioritize 

the encryption of data with weights of 0.5 or 

higher in two different ways under the RSA 

encryption algorithm. It is evident from the 

figure that encrypting data based on the order of 

data weight allows the encryption of high-

weight data in a shorter time, ensuring that 

meteorological privacy is not easily 

compromised. Lower privacy level data carries 

less risk, aligning with the encryption 

philosophy presented in this paper. 

 

Figure 3. Encryption of High-Level Data, Time Comparison for Two Encryption Approaches under the 

RSA Algorithm (Incorporating Masking Techniques)  
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Figure 3 builds on the encryption approach in 

Figure 2 by adding masking techniques. The 

results are clear in the figure: the execution time 

for encryption is significantly reduced, 

especially for high-byte data. After applying 

masking techniques, many redundant and 

critical data are processed, resulting in 

improved encryption protection. 

In the normal data encryption scenario, the 

addition of data masking techniques not only 

enhances data privacy protection but also 

reduces encryption time, improving encryption 

efficiency. 

 

Figure 4. Weight Ratio of Encrypted Data Achieving Privacy Weights of 0.6 and Above within 40 

Seconds 

 

Figure 4 shows the proportion of data with 

privacy weights of 0.6 and above within the 

high-weight data (all data with weights of 0.6 

and above) within 40 seconds.  

It can be found that the priority of encryption 

according to the weight can give priority to the 

protection of high privacy data, aligning with 

the privacy protection concept of meteorological 

data in the context of catastrophic weather 

events, and to a greater extent ensure that 

meteorological privacy is in a highly protected 

state. The experiment is constrained by time, 

and the results demonstrate that high privacy 

data can not only be prioritized but also 

encrypted in a shorter time, enhancing 

encryption efficiency and significantly reducing 

the threat of high privacy data leakage. 
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Figure 5. Weight Ratio of Encrypted Data to Total Weight within 40 Seconds 

 

Figure 5 shows the proportion of data with 

privacy weights of 0.6 and above within the total 

data weight within 40 seconds when encryption 

is performed based on the contribution of 

weight within a unit time. This approach allows 

high-weight data to be encrypted in a shorter 

time but is not suitable for the privacy 

protection of meteorological data in the context 

of catastrophic weather events. When data has 

high weight and a large byte count, the 

contribution value of that data’s weight is not 

necessarily high. In meteorological data, many 

high privacy data also have high byte counts. 

Therefore, the weight-prioritized encryption 

approach can better protect meteorological 

privacy. 

6. Conclusion 

Building upon the foundational premise of this 

paper, the research direction extends beyond 

mere confidentiality assurance for 

meteorological data. It is aimed at fortifying the 

privacy of meteorologically sensitive data within 

the constraints of limited device resources and 

time, particularly in the context of severe 

weather events. The simulations conducted 

above compellingly illustrate the substantial 

efficacy of priority-weight encryption in 

safeguarding the privacy of meteorological data 

during catastrophic weather conditions. This 

approach effectively prioritizes the encryption of 

highly sensitive data, supplemented by masking 

techniques, leading to reduced execution time 

and heightened encryption efficiency. 

Consequently, it significantly mitigates the risks 

associated with privacy breaches. Within the 

framework of the Limited Privacy Preservation 

(LPP) model, it maximizes privacy attainment 

within the constraints of restricted resources and 

time, thereby augmenting the overall efficacy of 

privacy protection. 
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