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Abstract 

In this paper, we will investigate the singular linear quadratic regulator (LQR) problem of switched 
linear system in finite time horizon. The proposed method is transforming into a switched LQR 
problem by adopting linear transformation. Next, we adopt an embedding transformation method to 
convert the switched LQR problem to a traditional optimal control problem, so the bang-bang-type 
solution of the embedded optimal control problem in finite time is the optimal solution to the 
switched LQR problem. The switching sequence of modes and the switching instants can be calculated 
by solving a closed-form optimal switching condition. The optimal state feedback control law is 
determined simultaneously. Then, by solving a sequence of Riccati equation, we find some conditions 
that ensure switched LQR problem can be convert to the singular LQR problem. Finally, a numerical 
example is presented to demonstrate the effectiveness of the proposed method. 
Keywords: Switched systems, Linear transformation, Embedding transformation, Quadratic 
programming, Riccati equation 

 

 

 

1. Introduction 

As an important class of hybrid system, 
switched systems have drawn considerable 
attention in the past thirty years (Liu Xiaomeng, 
et al., 2013; Lu Junjie et al., 2018; Fu Jun et al., 
2015; Lee Ti-Chung et al., 2017; Xu Wei et al., 
2020; Chen Weisheng et al., 2018). Switched 
systems have wide range of practical 
engineering application, such as aerospace field, 
chemical, biology and economics. In addition, 
different properties, such as stability (Ma 
Ruicheng & An Shuang, 2019), stabilization (Ma 
Ruicheng, Chen Qi, Zhao Shengzhi & Fu Jun, 

2021), controllability (Liu Xiaomeng, Lin Hai & 
Chen Ben M., 2013), observer design (Tanwani 
Aneel, Shim Hyungbo & Liberzon Daniel, 2013), 
and  control (Ma Ruicheng, Ma Mingjun, Li 
Jinghan, Fu Jun & Wu Caiyun, 2019), of 
switched systems are one of the hot topics in the 
literature. Some effective research methods, for 
example, common Lyapunov function (Ma 
Ruicheng, Liu Yan, Zhao Shengzhi, Wang Min & 
Zong Guangdeng, 2015), single Lyapunov 
function (Wang Min & Zhao Jun, 2010), and 
multiple Lyapunov functions (Li Li Li, Zhao Jun 
& Dimirovski Georgi M., 2013), play an 
important role in investigating switched 
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systems. 

The study of optimal control is an important 
research content of modern control theory (Niu 
Teng, et al., 2018; Sorin C. Bengea et al., 2005; 
Riedinger & Pierre, 2014; Xu, Wei et al., 2020; Xu 
Wei, et al., 2017). The basic methods of studying 
optimal control mainly include three methods: 
variational method, minimum value principle 
and dynamic programming (Luus Rein, & Chen 
Yang Quan, 2004; Seatzu Carla, Corona Daniele, 
Giua Alessandro & Bemporad Alberto, 2006; Xu 
Xuping, Antsaklis Panos J., 2004). In recent years, 
the optimal control of switched systems has 
attracted increasing attention because of their 
importance from both theoretical and practical 
points of view. In order to achieve the optimal 
control of a switched system, one needs to 
determine a subsystem sequence, fix the 
switching times between the subsystems and 
design an input for each subsystem. It should be 
noted that they are strongly coupled. Therefore, 
the optimal control of switched systems is much 
more difficult than the one of non-switched 
systems. Some classical approaches, such as 
minimum value principle and dynamic 
programming, have extended to investigate the 
optimal control problem of switched systems. 
Since the linear quadratic regulation (LQR) 
problem (Duarte J. Antunes & W.P.M.H. 
Heemels, 2017; Seatzu Carla, Corona Daniele, 
Giua Alessandro & Bemporad Alberto, 2006; Bijl 
Hildo & Schon Thomas B., 2019; Wu Weiping, 
Gao Jianjun, Lu Jun Guo & Li Xun, 2020) is very 
commonly used in optimal control applications, 
we consider the global optimal solution of this 
class of optimal switching problem in this paper. 
As a special class of LQR problems, a basic 
problem of a switched system is to find an 
optimal switching times with a fixed predefined 
mode sequence such that the objective function 
is optimal. Although various method has also 
been developed to deal with LQR problem for 
various classes of switched systems, the 
question of how to obtain a closed-form optimal 
solution of the switching sequence and the 
control input is still a challenging problem. 
Applying the embedding-transformation 
method, (Wu Guangyu, Sun Jian & Chen, Jie, 

2019) investigate two closed-form switching 
conditions involved by the switching law for LQ 
cost and multiple LQ cost when the mode 
sequence and the switching instants are 
unspecified. The switching-dependent state 
feedback control law can be determined 
simultaneously. Since there exist the control 
input in the objective function, which makes the 
Hamilton function and the control variable have 
a nonlinear relationship. However, when the 
control input does not exist in the objective 
function, the Hamiltonian has a linear 
relationship with the control variable, which will 
yield the singular LQR problem of switched 
systems. Although some efforts have been done 
for the LQR problem of switched systems, there 
are few results on the singular LQR of switched 
systems in the literature. 

In this paper, we will investigate the singular 
LQR problem of switched linear system in finite 
time horizon. First, a linear transformation is 
introduced, which converts the singular LQR 
problem into the switched LQR problem. Second, 
the embedding transformation method is then 
adopted to convert the switched LQR problem 
to the continuous optimal control problem. The 
optimal switch input can be viewed as a 
quadratic programming problem. The quadratic 
programming problem is considered as a 
minimization of a concave function. The optimal 
solution of the switched LQR problem is of 
bang- bang type. Then, both the control input 
and the switching signal are simultaneously 
designed. Next, by solving a sequence of Riccati 
equation, some conditions are shown to ensure 
that the switched LQR problem can be convert 
to the singular LQR problem. Therefore, both 
the closed-loop system of the singular LQR 
problem and optimal switching condition of 
subsystems can be obtained. Finally, a numerical 
example is presented to demonstrate the 
effectiveness of the proposed method. 

The paper organization is as follows. In Section 
2, the problem statements and preliminaries are 
presented. Main results are given in Section 3. A 
numerical example is shown to illustrate the 
validity of the theoretical results in Section 4. 
Finally, some conclusions are drawn in Section 5. 

2. Problem Statements and Preliminaries 

In this paper, we consider the following class of 

switched linear system: 

( ) 0 0( ) ( ) ( ), ( ) ,tx t A x t Bu t x t x                          (1) 

where ( ) nx t R is the state, 1( ) nu t R  is the control input, ( ) :[0, ) {1, 2, , }t M m     is 
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the switching law which is assumed to be a 
piecewise continuous (from the right) function 
of time, with m being the number of subsystems, 

pA  and B , p M  , are known matrices of the 
appropriate dimensions, 0t  is a fixed initial 
time and 0( )x t  is the initial state. 

Now, we make the following assumption for 
switched system (1). 

Assumption 1: Each subsystem ( , ),iA B i M  , 
is controllable. 

In this paper, we will study the singular linear 
quadratic regulation (SLQR) problem: 

Problem 1: For the SLQR problem of switched 
system (1), the control input ( )u t  and switching 
signal ( )t  will be co-designed to minimize the 
following cost function: 

0

1 ( ) ( ) ,
2

ft T

t
J x t Qx t dt                                (2) 

where Q  is a n n  positive semi-definite 
matrix, and ft  is a fixed final time. 

In the following, we need to explain why 

Problem 1 is singular. 

First construct the Hamiltonian function: 

( )
1 ( ) ( ) ( )[ ( ) ( )],
2

T
tH x t Qx t t A x t Bu t                           (3) 

where ( )t  is the Lagrangian multiplier. At this 
time, the Hamiltonian function H  of Problem 1 
has a linear relationship with the control 
variable ( )u t  and a nonlinear relationship with 

the state variable ( )x t . 

According to the minimum value principle, ( )x t  
and ( )t  satisfy the following regular 
equations: 

( )( ) ( ) ( ),t
Hx t A x t Bu t


  


                            (4) 

( )( ) ( ) ( ).T
t

Ht Qx t A t
x  

    


                          (5) 

Extreme value conditions: 

( ) 0,TH B t
u


 


                               (6) 

2

2 0.H
u





                                 (7) 

For non-zero ( )t , the optimal control is 

( ) sgn{ ( )}.Tu t B t                               (8) 

(8) shows that the optimal control takes a value 
on its constraint boundary, which is a bang-bang 
control form. 

Although the extreme value condition satisfies 
the necessary condition of the minimum value 
principle, the Hamiltonian function has nothing 
to do with the control, so the Hamiltonian 
function cannot be the absolute minimum 
relative to ( )u t . This kind of control problem is 
called singular optimal control problem. 

In order to use the results of the standard 
regulator to obtain the solution of Problem 1, the 
singular regulator can be transformed into an 
equivalent standard regulator by the linear 
transformation method, that is, the modified 
singular linear quadratic regulator (MSLQR). 

First, in order to solve Problem 1, we define the 
following linear transformation on the switched 
system (1): 

1 1( ) ( ) ( ),x t x t Bu t                                        (9) 

1( ) ( ).u t u t                                         (10) 

From (9) and (10), we get 
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1

( )

( ) ( ) 1 ( ) 1

( ) 1 ( ) 1

( ) 1 ( ) 1

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

[ ( ) ( )] ( )

( ) ( ),

t

t t t

t t

t t

x t x t Bu t
A x t Bu t Bu t
A x t A Bu t A Bu t
A x t Bu t A Bu t

A x t B u t



  

 

 

 
  

  

  

 

 



                     (11) 

where 

( ) ( ) .t tB A B                                      (12) 

Define 

,H QB                                        (13) 

.TR B QB                                       (14) 

One can check that R  is a symmetric positive 
definite matrix. Then, substituting (9) into (2) 

yields that 

0

0

0

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1
1 1 1 1 1 1 1 1 1

1 ( ) ( )
2
1 [ ( ) ( )] [ ( ) ( )]
2
1 [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]
2
1 [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
2

f

f

f

t T

t

t T

t

t T T T T T

t

T T T T T T T

J x t Qx t dt

x t Bu t Q x t Bu t dt

x t Qx t x t Hu t u t H x t u t Ru t dt

x t Qx t x t HR H x t x t HR Ru t u t RR H x t x t  



  

   

    







0

0

1 1
1 1 1

1 1 1 2 2

) ( ) ( ) ( )]

1 [ ( ) ( ) ( ) ( )] ,
2

f

f

t T T

t

t T T

t

HR RR H x t u t Ru t dt

x t Q x t u t Ru t dt

  

 





(15) 

where 
1

1 ,TQ Q HR H                                     (16) 
1

2 1 1( ) ( ) ( ).Tu t u t R H x t                                   (17) 

As a performance index, in (15), 1Q  and R  are 
required to be symmetric non-negative definite 
and positive definite matrices. As for the 

non-negative qualitativeness of 1Q , the 
following proposition can be seen. 

Proposition 1: If 0, 0Q R  , then 1
1 0.TQ Q HR H    

Proof: Due to 0Q  , one has 

1 1
1 1 1 1 1 1 1( ) ( ) ( ) ( ) [ ( ) ( )] [ ( ) ( )] 0, ( ).T T T T Tx t Qx t x t Q x t u t R H x t R u t R H x t x t          (18) 

Define 1
1 1( ) ( ).Tu t R H x t  Then, we obtain that 

1 1 1 1( ) ( ) 0, ( ).Tx t Q x t x t   

Therefore, we have 1 0Q  . 

Remark 1: If 0Q   and rankB m , there must 
be 0R   in (14). For the case of 0Q  , there are 
many possible matrices B , which can 
make 0R  . If R  is not positive definiteness, 
we transformed it until the positive definiteness 
is established. In the following, we assume that 

0R  . 

It should be noted that (15) does not contain 
1( )u t  but contains 2 ( )u t . Thus, (11) can be 

further transformed. 

Substituting (17) into (11) yields 
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1 ( ) 1 ( ) 1

1
( ) 1 ( ) 2 1

1
( ) 1 ( ) 2 ( ) 1

1
( ) ( ) 1 ( ) 2

( ) 1 ( ) 2

( ) ( ) ( )

( ) [ ( ) ( )]

( ) ( ) ( )

[ ] ( ) ( )

( ) ( )

t t

T
t t

T
t t t

T
t t t

t t

x t A x t B u t

A x t B u t R H x t

A x t B u t B R H x t

A B R H x t B u t

A x t B u t

 

 

  

  

 







 

  

  

  

 




 

 

 

                      (19) 

and 1 0 0 1 0( ) ( ) ( ),x t x t Bu t   where 

1
( ) ( ) ( ) .Tt t tA A B R H  

                                 (20) 

In order to ensure the existence of the optimal 
solution of (19), we assume that each subsystem 
( , ),i iA B i M   , is controllable. 

By using the linear transformation method, a 
new optimal control problem (MSLQR) can be 
defined as follows. 

Problem 2: For switched system (19), the 
MSLQR problem can be defined as determining 
a control input 2 ( )u t  and a switch signal ( )t  
associated with a general LQ cost function for 
evaluating the systems performance 
quantitatively in a finite horizon 0[ , ]ft t : 

0
1 1 1 2 2

1min [ ( ) ( ) ( ) ( )] ,
2

ft T T

t
J x t Q x t u t Ru t dt                      (21) 

where 1Q and R  are symmetric non-negative 
definite and positive definite matrices. 

Remark 2: If B  is reversible, then ( ) 0tA   
and 1 0Q  . 

3. Main Results 

In this section, we first propose the main result 
for Problem 2. 
Theorem 1: Consider the switched system (19), 
both the switching signal 

1
1( ) arg min ( )[ ( ) ( )],
2

T
i ii

i M
t t A x t B t  


                       (22) 

and the switched controller 

1
2 ( )( ) ( ),T

tu t R B t                                 (23) 

minimize the cost functional (21), where 1( ) [ , , ]Tnt     is the solution of 

1 1 ( )( ) ( ) ( ),T
tt Q x t A t                                (24) 

with the boundary condition ( ) 0ft  . 

Proof:  For simplicity, we define 

1 1 1 ,
( ) , ( ) ( ) .

N N N

i i i j i j
i i i j i j
w t w w t w t w w

  
      

Then, switched system (19) can be represented by a combination of N  subsystems:  

1 1 2( ) ( )[ ( ) ( )],i i i
i

x t w t A x t Bu t                          (25) 

where ( ) {0,1}iw t  . 

By adopting the embedding transformation 
method,  we embed switched system (25) into a 
larger family of systems by allowing ( )iw t  to 

vary continuously in [0,1] . 

The Problem 2  can be transformed into the 
embedded Problem 2 as follows: 
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0
1 1 1 2 2

1 1 2

1min [ ( ) ( ) ( ) ( )]
2

. . ( ) ( )[ ( ) ( )].

ft T T

t

i i i
i

J x t Q x t u t Ru t dt

s t x t w t A x t B u t

 

 


  

                     (26) 

The time-varying vector ( )w t  belongs to a convex set W : 

{ : 1, 0}.N
i i

i
W w R w w                            (27) 

The Hamilton function is defined as 

1 2 1 1 1 2 2 1 2
1[ , , , ] [ ( ) ( ) ( ) ( )] ( ) ( )[ ( ) ( )].
2

T T T
i i i

i
H x u w x t Q x t u t Ru t t w t A x t B u t            (28) 

Then, we obtain the adjoint equation and boundary conditions:  

1 1
1

( ) ( ) ( ),T
i i

i

Ht Q x t w A t
x

 
    

                          (29) 

( ) 0.ft                                      (30) 

Since 2 ( )u t  is not constrained, then the optimal control should satisfy the following:  

2
2

( ) ( ) 0.T
i i

i

H Ru t w B t
u


  

                            (31) 

Sine 0R  , then its inverse 1R  exists. Thus, we have 
1

2 ( ) ( ).T
i i

i
u t R w B t   

                            (32) 

Substituting (32) into (28) yields 

1
1 1 1 1 1

,

1 1[ , , ] ( ) ( ) ( ) ( ) ( ) ( ).
2 2

T T T T
i i i j i j

i i j
H x w x t Q x t t w A x t t w w B R B t             (33) 

Minimizing H  with respect to ( )w t  can be simplified to minimize 

1
1 1

,

1[ , , ] ( ) ( ) ( ) ( ).
2

T T T
i j i j i i

i j i
H x w t w w B R B t t w A x t                     (34) 

 

Define 

1 ,Tij i jB B R B                                   (35) 

where 1[ , , ]i i T
i nB b b     and ( 1, , )i

jb j n   
is a m-dimensional row vector. The elements of 

ijB can be obtained 

1( , ) ( ) ,i i T
ij s tB s t b R b                               (36) 

where , 1, ,s t n  . 

Following the method in (Wu Guangyu, Sun 
Jian & Chen Jie, 2019),  to minimize H  with 

respect to ( )w t  can be viewed as a quadratic 
programming problem: 
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1min ( ) ( ) ( ) ( ) ( )
2

. . ( ) ,

T Tw t G t w t q t w t

s t w t W

 


                      (37) 

Where 1( ) [ , , ]TNq t q q   and  

,
( , ) ( ) ( , ) ( ),T

i j ij
i j

G i j t w w B s t t                         (38) 

1( ) ( ).T
i iq t A x t                                 (39) 

One can check that 

1 ,T T
ij j i ijB B R B B                                (40) 

( , ) ( ) ( ) ( , ).T
jiG j i t B t G i j                          (41) 

Then,  matrix ( )G t  is symmetric and 
( ) 0G t  .  Therefore,  problem (37) is 

considered as a minimization of a concave 
function. In this case, the global minimum point 
of H  is always achieved at the extreme point 

of the convex set W ,  i. e. ,  the optimal solution 
of the embedded Problem 2 is of bang-bang 
type. 

Therefore, 

1

1

min
1min ( )[ ( ) ( )]
2

1( )[ ( ) ( )],
2

m

T
i iii M

T
k kk

H H

t A x t B t

t A x t B t

 

 





 

 





                      (42) 

where 1kw   and 0,iw i k   . This 
completes the proof. 

In the following, we will apply the solution of 

Problem 2 to solve Problem 1. 

First, from (19) and (23), we get 

1
1 ( ) 1 ( ) ( )( ) ( ) ( ).T

t t tx t A x t B R B t                              (43) 

It is clear that (24) and (43) are linear, i.e., ( )t  
and 1( )x t  are linear. Therefore, we can define 

that 

( ) 1( ) ( ),tt P x t                                 (44) 

where ( )tP is the non-negative definite symmetric matrix. Then, (43) becomes 

1
1 ( ) 1 ( ) ( ) ( ) 1( ) ( ) ( ).T

t t t tx t A x t B R B P x t   
                      (45) 

Taking the derivative of (44) with respect to time t , we have 

( ) 1( ) ( ),tt P x t                                  (46) 

together with (45), we obtain that 

1
( ) ( ) ( ) ( ) ( ) ( ) 1( ) [ ] ( ).T
t t t t t tt P A P B R B P x t                              (47) 

Applying (44) to (24), it has 
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1 ( ) ( ) 1( ) [ ] ( ).T
t tt Q A P x t                              (48) 

According to (47) and (48), ( )tP satisfies the following algebra Riccati equation: 

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 10 .T T
t t t t t t t tP A A P P B R B P Q       

                          (49) 

Substituting (44) into (23), the optimal controller of the Problem 2 is 
1

2 ( ) ( ) 1

1

( ) ( )

( ),

T
t tu t R B P x t

Kx t
 

 






                             (50) 

where 

1
( ) ( ).
T
t tK R B P 

                                  (51) 

Then, substituting (50) into (17) yields 

1
1 2 1

1 1
( ) ( ) 1 1

1
( ) ( ) 1

1 1

( ) ( ) ( )

( ) ( )

( ) ( )

( ),

T

T T
t t

T T
t t

u t u t R H x t

R B P x t R H x t

R B P H x t

K x t

 

 



 



 

  

  









                    (52) 

where 

1 1
1 ( ) ( ) ( ) ( )( ) ( ) [ ( )].T T T T T

t t t tK R B P H B QB B A P Q   
                     (53) 

Therefore, the above results can be summarized 
as the following theorem. 

Theorem 2: For Problem 2, its optimal control is 
shown in (52), where 1K  satisfies (53), ( )tP  

satisfies (49) and ( )t  satisfies (22). Each 
variable satisfies the following relationship (for 
all t ): 

( ) 0;tP B                                       (54) 

1 ;K B I                                       (55) 

1 ( ) 0.K x t                                       (56) 

Proof: (i) Applying (20) and (16) to (49), one has 

1 1
( ) ( ) ( ) ( ) ( ) ( )

1 1
( ) ( ) ( ) ( )

0 [ ] [ ]

.

T T T
t t t t t t

T T
t t t t

P A B R H A B R H P

P B R B P Q HR H
     

   

 

 

   

  

 

                   (57) 

Multiplying matrix B  to the right of ( 5 7 ) ,  we can get that 
1 1

( ) ( ) ( ) ( ) ( ) ( )

1 1
( ) ( ) ( ) ( )

0 [ ] [ ]

.

T T T
t t t t t t

T T
t t t t

P A B R H B A B R H P B

P B R B P B QB HR H B
     

   

 

 

   

  

 

                   (58) 

Substituting (12), (13), and (14) into (58), we have 

1 1
( ) ( ) ( ) ( ) ( ) ( )0 [ ] .T T T
t t t t t tA HR B P B R B P B     
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Therefore, one has ( ) 0, .tP B t     

( ii) Multiplying matrix B  to the right of (53),  we can get 

1
1 ( ) ( )( ) .T T

t tK B R B P H B 
   

Since ( ) 0tP B   and TH B R ,  then 1 , .K B I t   

( iii)  According to linear transformation ( 9 ) ,  we obtain that 

1 1 1 1 1 1 1 1( ) [ ( ) ( )] ( ) ( ).K x t K x t Bu t K x t K Bu t                     (59) 

In the above formula, substituting (52) and (55), one has 

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1

( ) ( ) ( )
( ) [ ( )]
( ) ( )
( ) ( )

0

K x t K x t K Bu t
K x t K B K x t
K x t K BK x t
K x t IK x t

 
  
 
 



                          (60) 

Therefore,  (56) is immediately proved. 

Using the solution of Problem 2 to solve Problem 
1 needs to satisfy the following conditions.  

According to the solution of Problem 2, by (9), 
we can obtain the following boundary 
constraints:  

0 1 0 1 0( ) ( ) ( ),x t x t Bu t                               (61) 

where 0( )x t  is any given initial state in 
problem 1. Therefore, the initial state 1 0( )x t  
in problem 2 dependent on the initial state 

0( )x t ,  and the boundary constraint (61) must 
be satisfied. 

When 0t t , by Theorem 2, we have 

1 0 1 1 0( ) ( ).u t K x t   

Then,  the boundary condition (61) becomes  

0 1 0 1 1 0( ) ( ) ( ).x t x t BK x t                                (62) 

Now,  the following theorem will give the 
necessary and sufficient conditions for (62) 
established. 

Theorem 3 :  The necessary and sufficient 
condition for the establishment of the boundary 
constraint (62) is  

1 ( ) 0, .K x t t   

Proof:  ( Necessity)  Multiplying the matrix 1K  to the left side of (62), we can get 

1 0 1 1 0 1 1 1 0( ) ( ) ( ).K x t K x t K BK x t   

From (55), we have that 

1 .K B I  

Therefore,  the necessity holds for 1 0( ) 0K x t  . 

(Sufficiency) Let 1 0( ) 0K x t   and choose 
0 1 0( ) ( )x t x t . Then, we obtain that 

1 0 1 1 0( ) ( ) 0,K x t K x t   

in which 

1 0 1 1 0( ) ( ) 0.u t K x t    
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Therefore, one has 

0 1 0 1 1 0( ) ( ) ( ).x t x t BK x t   

In order to convert the solution of Problem 2 
back to the solution of Problem 1 ,  we require 
that the relationship (9) is established when 

0t t , and that (9) can also be established when 
0t t . The following theorem will give an 

explanation.  
Theorem 4 :  If 

1 1( ) ( ) ( )x t x t Bu t                                  (63) 

holds at 0t t , then (63) still holds for all 
0t t . 

Proof:  For all 0t t ,  taking the derivative of 
(63)  with respect to time t, we have 

1 1 1 1

( ) ( ) 1 ( ) 1

( ) ( ) 1 ( ) 1

( ) 1 1

[ ( ) ( ) ( )] ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

[ ( ) ( ) ( )].

t t t

t t t

t

d x t x t Bu t x t x t Bu t
dt

A x t Bu t A x t B u t Bu t
A x t A x t A Bu t
A x t x t Bu t

  

  



    

    

  

  

  


              (64) 

Obviously (64) is a homogeneous equation of 
state. Let the state transition matrix is 0( , )t t ,  

then the solution of (64) is 

1 1 0 0 1 0 1 0[ ( ) ( ) ( )] ( , )[ ( ) ( ) ( )].x t x t Bu t t t x t x t Bu t                      (65) 

In (65), 0( , )t t  is a non-singular matrix, and by (61), we proved 

1 1( ) ( ) ( ), .x t x t Bu t t    

From Theorem 3  and Theorem 4 ,  the solution 
of the Problem 2 must be transformed into the 
solution of the Problem 1. 

Therefore,  from (10), we obtain that the 
optimal control input of Problem 1 is 

1

1 1

1 ( ) 1 ( ) 1

1 ( ) 1 ( ) 1

1 ( ) 1 ( ) 1

1 ( ) ( ) 1 ( ) 1

1 ( )

( ) ( )
( )

[ ( ) ( )]
[ ( ) ( )]
[ ( ( ) ( )) ( )]
[ ( ) ( ) ( )]

( ).

t t

t t

t t

t t t

t

u t u t
K x t

K A x t B u t
K A x t A Bu t
K A x t Bu t A Bu t
K A x t A Bu t A Bu t
K A x t

 

 

 

  




 

  

  

   

   

 






                   (66) 

Then, the closed-loop switched system becomes 

( ) 1 ( )( ) [ ] ( ).t tx t A BK A x t                             (67) 

The switching condition of switched system (1) that minimizes the cost function (2) is 

1 1 1

1 1

1 1

1( ) arg min( ( )) [ ( ) ( )]
2

1arg min ( ) ( ) ( )
2

1arg min[ ( ) ( )] ( )[ ( ) ( )],
2

T
i i ii i

i M

T
i i ii i

i M

T
i i ii i

i M

t Px t A x t B Px t

x t P A B P x t

x t Bu t P A B P x t Bu t








 

 

   







               (68) 

where each ,iP i M  ,  satisfies the algebra Riccati equation (49). 
4 .  An Illustrative Example 
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Consider a switched linear system (1) with the following subsystems: 

1

2

3

( ) ( ), [1,0,0]
( ) ( ) ( ), [0,1,0],

( ) ( ), [0,0,1]

A x t Bu t w
x t A x t Bu t w

A x t Bu t w

 
  
  

  

with 

1 2 1

1 1 2 2 3 2 2
, , , .

0 1 0 2 0 3 3
A A A B

           
                 

 

The cost function is defined as 

0

1 ( ) ( ) ,
2

ft T

t
J x t Qx t dt                                 (69) 

where 
3 2
2 3

Q  
  
 

,  initial time 0 0t  ,  and final time 100ft  . 

Our purpose is minimizing the cost function (69) 
by designing switching signal and controllers 
for each subsystems. 

It should be noted that each subsystem 

( , ), {1, 2,3}iA B i M   , is controllable. 

By our proposed method in previous section, 
we define the linear transformation 

1 1

1

( ) ( ) ( ),
( ) ( ).

x t x t Bu t
u t u t

 
                               (70) 

Then,  we obtain the switched linear system ( 1 9 )  with the following subsystems: 

1 1 1 1

1 2 1 2 2

3 1 3 3

( ) ( ), [1,0,0]
( ) ( ) ( ), [0,1,0],

( ) ( ), [0,0,1]

A x t B u t w
x t A x t B u t w

A x t B u t w

  


  
  

 
 
 

 

Where 

1 2 1 1 2 3

1 21 2 63 50 21 100 63 3 2 5 2 0
, , , , , .

4 7 8 21 8 7 16 21 12 7 8 7 3 6 9
A A A B B B

              
                                

       (71) 

It is known that each subsystem ( , )i iA B  is 
controllable. Thus,  the cost function (6 9 )  can 

be converted to the following:  

0
1 1 1 2 2

1 [ ( ) ( ) ( ) ( )] .
2

ft T T

t
J x t Q x t u t Ru t dt   

By (14) and (16), we obtain 63R   and 1

5 7 10 21
10 21 20 63

Q
 

   
. By solving (49), we get 

1 2

31

1400 947 1161 1178 700 3187 1482 10121
, ,

1161 1178 387 589 1482 10121 1070 10961

329 1760 329 2640
.

329 2640 329 3960

P P

P

    
        

 
   

       (72) 
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Therefore, we design the switching signal of the switched system: 

1 1
1( ) arg min[ ( ) ( )] ( )[ ( ) ( )],
2

T
i i ii i

i M
t x t Bu t P A B P x t Bu t


                     (73) 

and the controllers for each subsystems: 
1

( ) ( ) ( )( ) ( ) ( ).T T
t t tu t R B P H A x t  

    

Choose the initial state (0) [2,2]Tx   and the 
costate vector (0) [478 485, 387 589]T   . 
The state trajectories under switched LQR are 

shown in Figure 1. The optimal switching 
control and input control are shown in Figure 
3 and Figure 2, respectively. 

 

 
Figure 1. The state trajectories of switched 

system 

 

Figure 2. The input trajectories of switched 
system 

 

Figure 3. Switching signal ( )t  

 

5. Conclusions 

This paper has dealt with singular optimal linear 
quadratic regulator of switched systems, where 
the controlled variable is comprised of the 
switch signal as well as the control input. We 
have investigated on a finite time horizon and 
solved them by the linear transformation and 
embedding transformation method. The Hessian 
matrices of the Hamilton functions have been 
proven to be negative semi-definite, which leads 
to bang-bang type solutions of the optimization 
problems. The switching condition is obtained 
by solving the Riccati equation, and then the 
optimal switching instants and optimal mode 
selection are obtained. Finally, a numerical 
example has illustrated the efficacy of the 
proposed method. 
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