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Abstract 

We show how to produce the closed form solution for the motion of a charged particle in the magnetic 
field of an infinitely long, current-carrying wire in the relativistic range, thus extending the results 
produced recently (Asadi-Zeydabadi, M., & Zaidins, C. S., 2019). We outline the areas where the two 
solutions are similar aa well as where the two solutions are slightly different. We also extend the work 
in (Asadi-Zeydabadi, M., & Zaidins, C. S., 2019) to the more realistic case where the current generates 
both a magnetic and an electric field, as is the case in real life. We plan to extend the approach in the 
future to more complicated cases as the one of the finite length wire. The solution is of great interest 
for the design of particle accelerators, hence it is interesting for both theoretical physicists and 
engineers alike. 
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1. Introduction 

Extensive treatment of the trajectories of charged 
particles moving at non-relativistic speeds in a 
magnetic field abound in scientific literature 
(Cook, M. D., 1970; Hurley, J., 1961; Hertweck, F., 
1959; Muller, M., & Dietrich, K., 1995; Yafaev, D., 
2003; Essen, H., & Nordmark, A., 2016; Prentice, 
A., Fatuzzo, M., & Toepker, T., 2015; Brizard, A. 
J., 2017; Seymour, P. W., 1959; Stetson, R. F., 
Lamborn, B. N. A., & Lafferty, D. L., 1963; 
Huggins, E. R., & Lelek, J. J., 1979; McGuire, G. 
C., 1979; Öztürk, M. K., 2012; Aguirre, A. J., 
Luque, B. A., & Peralta-Salas, D., 2010). An 
exhaustive relativistic treatment for the case of 
arbitrary stationary electromagnetic fields can 

be found in (Sfarti, A., 2011). Treatments for 
constant magnetic fields are quite common in 
literature, on the other hand, if the magnetic 
field is not constant this will make the problem 
significantly more difficult to solve. A solution 
for the non-constant magnetic field of an 
infinitely long wire has only been produced 
recently (Asadi-Zeydabadi, M., & Zaidins, C. S., 
2019) but only for the non-relativistic regime. In 
the current paper we are providing the most 
general, fully relativistic solution for the case of 
a charged particle moving in the variable 
magnetic field created by an infinitely long, 
current-carrying wire. Such a field is obviously 
non uniform, thus making the problem 
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somewhat challenging. Yet, the solution turned 
out to be quite elegant. The idea behind this 
research is that different wire and loop 
configurations can be used in order to accelerate 
charged particles up to relativistic velocities, 
thus creating methods for “steering” the 
particles in practical applications of particle 
accelerators. 

2. The Solution 

In what follows we use the exact notation used in 
(Asadi-Zeydabadi, M., & Zaidins, C. S., 2019). In 
the cylindrical coordinate system ( , , )s z , an 
infinitely long wire is located on the z-axis. The 
magnetic field produced by the current of 
intensity I  is (see figure 1): 
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Figure 1.  

The Lorentz force exerted on a particle of charge 
q  and mass m  entering the magnetic field at 
initial velocity 0v  and subsequently moving 
with the instantaneous velocity v  is: 

q F v B              (1.2) 

Because the Lorentz force is perpendicular on 
the particle velocity, the speed of the particle is 
constant 0v v  (Sfarti, A., 2011) while the 
velocity is variable. On the other hand, the 
relativistic force exerted on the particle of mass 
m moving with instantaneous velocity v  is, 
according to (Sfarti, A., 2011): 
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From (1,1), (1.2) and (1.3) we obtain: 
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  is the Larmor speed. The 

above equations correspond exactly to equations 
(3a-3c) from reference (Asadi-Zeydabadi, M., & 
Zaidins, C. S., 2019) with the right hand term 

scaled by the constant 0 . Therefore, the general 

case, valid at any speeds, including the 
relativistic ones, is solved by reducing the 
problem to one that has already been solved by 

simply scaling the Larmor speed Lv  by a 

constant. The net effect results into scaling 

variables ,u u   (Asadi-Zeydabadi, M., & 

Zaidins, C. S., 2019) by the same constant, 0 . 

As a consequence, equations (4a-4d) in 
(Asadi-Zeydabadi, M., & Zaidins, C. S., 2019) are 
unchanged. As a final consequence, the closed 
solution for the equations of motion expressed 
by (7), (8) and (12) in (Asadi-Zeydabadi, M., & 
Zaidins, C. S., 2019) also holds. Using the same 
notations as in (Asadi-Zeydabadi, M., & Zaidins, 
C. S., 2019), the equations of motion are: 
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The period of the motion is also identical with 
the one calculated in (Asadi-Zeydabadi, M., & 
Zaidins, C. S., 2019) for the non-relativistic case: 
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In (1.6) 0I  is the modified Bessel function of 
zeroth order.  

Naturally, not all formulas from 
(Asadi-Zeydabadi, M., & Zaidins, C. S., 2019) 
apply in the relativistic regime. For example, the 
relativistic kinetic energy has a much simpler 
form than the corresponding formula from 
reference (Asadi-Zeydabadi, M., & Zaidins, C. S., 
2019): 

2
0( 1)K mc           (1.7) 

The reason for the above is that no 
approximations are necessary when calculating 
the kinetic energy in the relativistic regime. 

3. A More Comprehensive Case 
The case treated above (and in 
(Asadi-Zeydabadi, M., & Zaidins, C. S., 2019)) 
ignores the fact that the current in the infinite 
wire creates not only a magnetic field but also 
an electric one: 

0

 
2 s





E s              (2.1) 

In (2.1)   represents the charge density. 
Therefore, the Lorentz force takes the general 
form: 
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The relativistic force becomes much more 
complex as well: 
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In (2.3) the speed is no longer constant: 
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Therefore, the equations of motion obtained 
from: 

LF = F               (2.5) 

no longer have a closed form. We cannot apply 
the change of coordinate system described in 
(Sfarti, A., 2011) because B,E  are variable. The 
presence of the factors in 2v  precludes us from 
getting the simple expressions from the previous 
section. The only available avenue left for 
integrating the equations of motion is the 
numerical one.  

4. Conclusion and Future Work 

We have solved the general, relativistic case of a 
charged particle moving in the magnetic field 
produced by an infinitely long wire by reducing 
the problem to one that has already been solved. 
We have shown that the equations of motion 
and the period of motion have the same form as 
the equations for the non-relativistic case, 
modulo the fact that the Larmor speed Lv  
needed to be scaled to 0/Lv  . On the other hand, 
the kinetic energy formula K  has a much 
simpler form. We have also added the treatment 
for the real life case where the current creates an 
electric field in addition to the magnetic one. 
The solution is of great interest for the design of 
particle accelerators, hence it is interesting for 
both theoretical physicists and engineers alike. 
We plan to extend the current work to the more 
challenging case of a wire of finite length. The 
case is interesting for practical reasons and it is 
challenging because of the more complicated 
form of the Biot – Savart law. 
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