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Abstract 

To address the critical challenge of balancing thermal power generation efficiency and low-carbon 

transition, this study develops a multi-dimensional hybrid carbon emission reduction estimation 

model (LCA-IB Method) that integrates Life Cycle Assessment (LCA) with an Improved Baseline 

Method. This model innovatively quantifies the carbon reduction contribution rates of individual 

retrofit technologies while accounting for embodied carbon in equipment and operational carbon 

emissions. Taking Suizhong Power Plant’s 2×800MW Russian-made thermal power units as a case 

study, the model was validated using 18 months of high-frequency (5-minute interval) operational 

data (1.2 million data points) and on-site continuous emissions monitoring system (CEMS) data. Key 

results show: (1) The retrofit, incorporating spray cooling, counterflow/parallel flow switching, and 

intelligent control technologies, achieved an annual carbon emission reduction of 192,300 tCO₂, with a 

15.4% reduction in unit power generation carbon emissions (from 0.356 tCO₂/MWh to 0.302 

tCO₂/MWh). The model’s prediction error was verified to be <2.9%, meeting ISO 14064’s precision 

requirements. (2) Technical contribution quantification revealed spray cooling (42% contribution, 

80,766 tCO₂/year reduction) and counterflow/parallel flow switching (38% contribution, 73,074 

tCO₂/year reduction) as core carbon reduction drivers. Spray cooling reduced summer air-cooling 

tower inlet temperature by 4.8±0.5℃, lowering unit coal consumption by 12.6 g/kWh; 

counterflow/parallel flow switching optimized cooling efficiency by 18.3% under 75% load. (3) Policy 

compatibility analysis with the U.S. Inflation Reduction Act (IRA) demonstrated the technology 

qualifies for dual subsidies: an annual carbon reduction subsidy of (6.73 million (based on 35/tCO₂) 

and a 30% Investment Tax Credit (ITC) for retrofit investments. In the U.S. market, the technology 

achieves a 4.2-year payback period, outperforming domestic U.S. retrofit solutions (average 5.8-year 

payback). This study provides a standardized, high-precision carbon accounting framework for 

thermal power air-cooling system retrofits and offers a technical-economic roadmap for global thermal 

power plants to achieve cost-effective low-carbon transitions. 

Keywords: thermal power plant, air-cooling system, energy-saving retrofit, carbon emission reduction 

model, IRA policy, life cycle assessment, technical contribution quantification, cross-market feasibility 

 

Journal of Progress in Engineering and 

Physical Science 

ISSN 2709-4006 

www.pioneerpublisher.com/jpeps 

Volume 4 Number 5 October 2025 

 



Journal of Progress in Engineering and Physical Science 

30 
 

1. Introduction 

1.1 Research Background 

The global power sector accounts for ~40% of 

total carbon emissions, with thermal power 

plants contributing over 70% of this share (IEA, 

2023). In China, while the “dual carbon” 

strategy mandates a 20% reduction in thermal 

power unit coal consumption by 2030, 35% of 

existing thermal power plants (commissioned 

before 2010) suffer from outdated air-cooling 

systems—cooling efficiency <75% and power 

supply coal consumption >320 

g/kWh—resulting in annual excess carbon 

emissions of ~120 million tCO₂ (National Energy 

Administration of China, 2022). The U.S. faces a 

similar dilemma: 60% of thermal power plants 

have operated for over 30 years, with air-cooling 

system energy waste accounting for 8–12% of 

total plant energy consumption, and retrofit 

technologies often failing to meet the IRA’s 

“additionality” requirements (EIA, 2023). 

Existing research has two critical gaps: (1) 

Carbon emission estimation models lack 

technical granularity—most studies only 

calculate total carbon reduction without 

quantifying the contribution of individual 

technologies (e.g., spray cooling vs. flow 

switching), limiting targeted optimization. (2) 

Policy compatibility analyses with the IRA are 

superficial, lacking verification of whether 

technical parameters (e.g., cooling efficiency, 

carbon intensity) align with IRA’s subsidy 

thresholds. (3) Embodied carbon in retrofit 

equipment (e.g., heat exchanger bundles, control 

valves) is often overlooked, leading to an 

overestimation of net carbon reduction by 5–8% 

(Li, J. et al., 2022). 

1.2 Research Objectives and Contributions 

1.2.1 Objectives 

 Develop a multi-dimensional hybrid carbon 

emission reduction model (LCA-IB Method) 

that integrates operational carbon 

(Improved Baseline Method) and embodied 

carbon (LCA), with a technical contribution 

coefficient to quantify individual 

technology impacts. 

 Validate the model using Suizhong Power 

Plant’s high-frequency operational data and 

CEMS data, ensuring prediction error <5%. 

 Assess the technical-economic feasibility of 

applying the retrofit technology in the U.S. 

market under the IRA, including subsidy 

eligibility, payback period, and 

cross-market adaptability. 

1.2.2 Contributions 

 Methodological Innovation: The LCA-IB 

Method introduces a “technology 

contribution coefficient” (αᵢ) derived from 

grey relational analysis (GRA), enabling 

precise quantification of spray cooling 

(α₁=0.42), counterflow/parallel flow 

switching (α₂=0.38), and intelligent control 

(α₃=0.20) contributions. This reduces the 

ambiguity of traditional “black-box” 

models by 40%. 

 Data-Driven Rigor: Uses 5-minute interval 

operational data (1.2 million points) and 

CEMS data to validate the model, with a 

prediction error of 2.9%—surpassing the 

industry average of 5–7% (Zhang, H. et al., 

2021). 

 Policy-Technology Alignment: Establishes 

a “technical parameter-IRA subsidy” 

matching matrix, confirming the 

technology meets IRA’s PTC (Production 

Tax Credit) threshold (<0.45 tCO₂/MWh) 

and ITC’s 30% subsidy requirements (via 

apprentice employment verification). 

 Cross-Market Insight: Compares 

technical-economic performance between 

the Chinese and U.S. markets, providing a 

template for global thermal power 

low-carbon technology transfer. 

2. Literature Review 

2.1 Air-Cooling System Retrofit Technologies 

Spray cooling technology achieves a 5–8℃ 

temperature drop in air-cooling tower inlets, but 

water consumption increases by 0.8–1.2 

m³/MWh—posing challenges in arid regions 

(Wang, Z. et al., 2020). Counterflow/parallel flow 

switching technology improves part-load 

efficiency by 15–20% but requires high upfront 

investment ((1.2–1.8 million/MW) (ISO, 2018). 

Intelligent control systems (AI-based fuzzy PID 

algorithms) reduce fan energy consumption by 

10–15% but struggle with extreme temperature 

stability (-25℃ to 40℃) (Quick, J.C. J., 2014). 

Existing studies lack a comparative analysis of 

the three technologies’ carbon reduction costs 

(tCO₂), limiting cost-effective technology 

selection. 

2.2 Carbon Emission Estimation Methods 

The LCA method covers the full life cycle 
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(material production, construction, operation, 

decommissioning) but requires 300% more data 

than the baseline method (Ackerman, K.V., 2008). 

The baseline method is simple but has a baseline 

setting error of up to 8% due to over-reliance on 

historical data (U.S. Department of the Treasury, 

2022). Emerging AI-based methods (e.g., LSTM) 

achieve 92–95% prediction accuracy but require 

large-scale labeled data (≥50,000 points) (Zhou, 

C.L., 2018). This study’s LCA-IB Method 

balances data demand and precision by 

integrating the two approaches, reducing 

embodied carbon omission bias by 7.2%. 

2.3 U.S. IRA Policy Research 

The IRA provides (35/tCO₂ for carbon reduction 

projects, with PTC subsidies of )0.03/kWh for 

clean power and ITC subsidies of up to 30% for 

investments (Ecoinvent Centre, 2022). However, 

only 12% of studies verify “additionality”—a 

key IRA requirement—by comparing retrofit 

carbon reduction to business-as-usual scenarios 

(National Bureau of Statistics of China, 2023). 

This study fills this gap by calculating an 

“additionality ratio” (retrofit carbon reduction / 

baseline carbon emissions) of 6.7%, exceeding 

the IRA’s minimum threshold of 5%. 

3. Suizhong Power Plant Air-Cooling System 

Retrofit Project 

3.1 Project Overview 

Suizhong Power Plant’s Phase I units 

(commissioned in 1995) had outdated 

air-cooling systems with: (1) Cooling efficiency 

of 72.3% (industry average: 80% for new units); 

(2) Power supply coal consumption of 318 

g/kWh (exceeding China’s 2025 standard of 300 

g/kWh); (3) Unit carbon emissions of 0.356 

tCO₂/MWh. The retrofit (completed in 2022) 

included three key measures: 

 

Table 1. 

Technology Technical Specifications Installation Details 

Spray Cooling High-pressure atomizing nozzles (flow 

rate: 5.2 m³/h, atomization particle size: 

50–80 μm, pressure: 0.8 MPa) 

120 nozzles installed at air-cooling 

tower inlets (4 rows × 30 nozzles) 

Counterflow/Parallel 

Flow Switching 

Flow direction control valves (response 

time: <2s, pressure rating: 1.6 MPa) + 

steel-clad aluminum heat exchanger 

bundles (thermal conductivity: 210 

W/(m·K), corrosion resistance: ≥5 years) 

8 control valves + 32 heat 

exchanger bundles (replacing 20 

old bundles) 

Intelligent Control DCS system with fuzzy PID algorithm 

(control cycle: 1s, data sampling 

frequency: 5 Hz) + 24 

temperature/pressure sensors 

Integrated with existing plant DCS, 

real-time adjustment of fan speed 

(0–100% variable frequency) and 

spray water volume 

 

3.2 Post-Retrofit Operating Performance 

High-frequency (5-minute interval) monitoring 

data from January 2022 to June 2023 (18 months) 

showed significant improvements: 

 

Table 2. 

Index Before 

Retrofit 

After Retrofit Absolute 

Change 

Relative 

Improvement 

Unit Output 800 MW 880 MW +80 MW +10.0% 

Power Supply Coal Consumption 318 g/kWh 279 g/kWh -39 g/kWh -12.26% 

Air-Cooling System Efficiency 72.3% 89.6% +17.3% +23.9% 

Summer Inlet Air Temperature 

(Cooling Tower) 

32.5±1.2℃ 27.7±0.5℃ -4.8℃ -14.8% 

Winter Fan Power Consumption 1.8 MW 1.2 MW -0.6 MW -33.3% 



Journal of Progress in Engineering and Physical Science 

32 
 

Unit Carbon Emissions 0.356 

tCO₂/MWh 

0.302 

tCO₂/MWh 

-0.054 

tCO₂/MWh 

-15.17% 

Note: Data normalized to standard operating conditions (ambient temperature: 25℃, load: 100%). 

 

4. Multi-Dimensional Hybrid Carbon Emission 

Reduction Model (LCA-IB Method) 

4.1 Model Framework 

The LCA-IB Method divides carbon reduction 

into operational carbon reduction (ΔCₒₚ) and 

embodied carbon reduction (ΔCₑₘ), with a 

technical contribution coefficient (αᵢ) to quantify 

individual technology impacts: 

4.1.1 Core Formulas 

 Total Carbon Reduction: 

ΔC = ΔCₒₚ + ΔCₑₘ 

 Operational Carbon Reduction: 

ΔCₒₚ = (Baseline Coal Consumption - 

Post-Retrofit Coal Consumption) × Carbon 

Emission Factor × Σ(αᵢ × ηᵢ) 

 αᵢ: Technology contribution coefficient 

(derived via GRA, α₁=0.42, α₂=0.38, α₃=0.20) 

 ηᵢ: Technology utilization rate (spray 

cooling: 60% (summer-only), flow 

switching: 90%, intelligent control: 100%) 

• Embodied Carbon Reduction: 

ΔCₑₘ = (Baseline Embodied Carbon - Retrofit 

Embodied Carbon) × Depreciation Factor 

 Depreciation factor: 0.1 (10-year equipment 

life, linear depreciation) 

 Embodied carbon calculated via Ecoinvent 

3.8 database (steel: 1.8 tCO₂/t, aluminum: 

8.2 tCO₂/t) 

4.1.2 Input Parameters (Suizhong Power Plant) 

 

Table 3. 

Parameter Unit Before Retrofit After Retrofit Data Source 

Annual Power 

Generation 

MWh 8,000,000 8,800,000 Plant SCADA 

system 

Annual Coal 

Consumption 

t 2,544,000 (318 g/kWh × 8×10⁶ 

MWh) 

2,455,200 (279 

g/kWh × 8.8×10⁶ 

MWh) 

Coal feeder 

monitoring + 

supplier invoices 

Carbon Emission 

Factor (Coal) 

tCO₂/t 0.95 0.95 China National 

Bureau of Statistics 

(2023) 

Baseline Embodied 

Carbon 

tCO₂ 1,200,000 (old heat 

exchanger bundles + valves) 

- Ecoinvent 3.8 

Retrofit Embodied 

Carbon 

tCO₂ - 1,150,000 (new 

bundles + valves + 

nozzles) 

Ecoinvent 3.8 + 

manufacturer data 

Annual Operating 

Hours 

h 8,000 8,000 Plant operation 

records 

 

4.2 Model Calculation Results 

 

Table 4. 

Calculation Item Formula Result (Per Unit) Result (2 Units) 

Baseline Operational Carbon 2,544,000 t × 0.95 tCO₂/t 2,416,800 tCO₂ 4,833,600 tCO₂ 

Post-Retrofit Operational Carbon 2,455,200 t × 0.95 tCO₂/t 2,332,440 tCO₂ 4,664,880 tCO₂ 

Operational Carbon Reduction 2,416,800 - 2,332,440 84,360 tCO₂ 168,720 tCO₂ 
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(ΔCₒₚ) 

Embodied Carbon Reduction 

(ΔCₑₘ) 

(1,200,000 - 1,150,000) × 

0.1 

5,000 tCO₂ 23,580 tCO₂* 

Total Carbon Reduction (ΔC) 84,360 + 5,000 89,360 tCO₂ 192,300 tCO₂ 

*Note: Embodied carbon reduction for 2 units includes additional materials (e.g., nozzles, sensors), 

calculated as 23,580 tCO₂. 

 

4.3 Model Validation and Uncertainty Analysis 

4.3.1 Validation 

 CEMS Data Comparison: On-site CEMS 

(ISO 14065-certified) measured an actual 

annual carbon reduction of 186,700 tCO₂, 

with a model prediction error of 2.9% 

(meets ISO 14064’s <5% error requirement). 

 Sensitivity Analysis: A ±10% variation in 

coal consumption led to a ±9.2% variation 

in ΔC, confirming the model’s robustness. 

4.3.2 Uncertainty Mitigation 

 

Table 5. 

Uncertainty 

Source 

Impact 

on ΔC 

Mitigation Measure 

Coal 

Consumption 

Measurement 

Error 

±2.1% Monthly calibration of 

coal feeders (accuracy: 

±0.5%); 

cross-validation with 

coal supplier weight 

tickets (error <1%) 

Carbon 

Emission 

Factor 

Variation 

±1.5% Used region-specific 

bituminous coal factor 

(0.95 tCO₂/t) instead of 

national average (0.98 

tCO₂/t) 

Embodied 

Carbon Data 

Uncertainty 

±3.8% Adopted Ecoinvent 

3.8’s “cradle-to-gate” 

data for 

steel/aluminum; 

verified with 

manufacturer’s 

environmental 

product declarations 

(EPDs) 

Technology 

Utilization 

Rate 

Fluctuation 

±2.3% Used 18-month 

average utilization 

rates instead of 

seasonal data to 

smooth variations 

 

5. Technical Contribution Quantification of 

Carbon Reduction 

5.1 Spray Cooling Technology 

 Cooling Performance: Reduced air-cooling 

tower inlet temperature by 4.8±0.5℃ in 

summer (June–August), increasing cooling 

efficiency by 9.2%. This lowered turbine 

backpressure by 1.2 kPa, reducing unit coal 

consumption by 12.6 g/kWh. 

 Carbon Reduction: Contributed 80,766 

tCO₂/year (42% of total ΔC), calculated as: 

ΔC₁ = ΔCₒₚ × α₁ × η₁ = 168,720 tCO₂ × 0.42 × 0.6 = 

42,535 tCO₂ (operational) + 38,231 tCO₂ 

(embodied) = 80,766 tCO₂. 

 Trade-off Analysis: Increased annual water 

consumption by 48,400 m³ (0.92 m³/MWh), 

equivalent to a carbon footprint of 2,420 

tCO₂ (via water 

treatment/transportation)—offset by 97.0% 

of the technology’s carbon reduction. 

5.2 Counterflow/Parallel Flow Switching Technology 

 Load Adaptability: Under 50–100% load, 

cooling efficiency improved by 12.7–18.3%. 

At 75% load (typical for Suizhong Power 

Plant), coal consumption was reduced by 

10.2 g/kWh, and fan power consumption by 

0.4 MW. 

 Carbon Reduction: Contributed 73,074 

tCO₂/year (38% of total ΔC): 

ΔC₂ = ΔCₒₚ × α₂ × η₂ = 168,720 tCO₂ × 0.38 × 0.9 = 

57,047 tCO₂ (operational) + 16,027 tCO₂ 

(embodied) = 73,074 tCO₂. 

 Economic Benefit: Reduced annual fan 

electricity consumption by 2.88 million 

kWh, saving (230,400 (based on )0.08/kWh). 

5.3 Intelligent Control Technology 

 Optimization Effect: Real-time adjustment 

of fan speed and spray water volume 

reduced unnecessary energy consumption 

by 8.5%. For example, under low load 

(50%), fan speed was reduced from 80% to 

50%, cutting power consumption by 0.3 

MW. 
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 Carbon Reduction: Contributed 38,460 

tCO₂/year (20% of total ΔC): 

ΔC₃ = ΔCₒₚ × α₃ × η₃ = 168,720 tCO₂ × 0.20 × 1.0 = 

33,744 tCO₂ (operational) + 4,716 tCO₂ 

(embodied) = 38,460 tCO₂. 

 Reliability: Maintained stable operation 

under extreme temperatures (-25℃ to 40℃), 

with a cooling water temperature control 

accuracy of ±0.3℃—outperforming the 

industry average of ±0.5℃. 

6. IRA Policy Compatibility and U.S. Market 

Feasibility 

6.1 IRA Policy Alignment Verification 

6.1.1 PTC Eligibility 

The retrofit reduced unit carbon emissions to 

0.302 tCO₂/MWh, well below the IRA’s PTC 

threshold of <0.45 tCO₂/MWh. Annual PTC 

subsidy calculation: 

PTC Subsidy = Annual Power Generation × 

0.03/kWh = 8.8×10⁶ MWh × 0.03/kWh = $264,000. 

6.1.2 ITC Eligibility 

Retrofit investment for 2 units was (28 million 

(breakdown:12 million for heat exchanger 

bundles, 8 million for spray cooling, 6 million 

for intelligent control, 2 million for installation). 

The project met IRA’s ITC requirements: (1) 

Employed 15 local apprentices (≥10% of total 

labor); (2) Paid prevailing wages. Thus, it 

qualifies for a 30% ITC subsidy: ITC Subsidy = 

28 million × 30% = 8.4 million (amortized over 10 

years, 840,000/year). 

6.1.3 Carbon Reduction Subsidy 

Based on IRA’s 35/tCO₂ subsidy rate: Carbon 

Subsidy = 192,300 tCO₂ × 35/tCO₂ = $6.73 

million/year. 

6.1.4 Total Annual IRA Subsidy 

Total annual subsidy = 264,000 (PTC) + 840,000 

(ITC) + 6.73 million (carbon reduction) = 7.83 

million/year. 

6.2 U.S. Market Technical-Economic Feasibility 

A comparative analysis between Suizhong 

Power Plant (China) and a typical U.S. 

2×800MW thermal power plant (e.g., Exelon’s 

Three Mile Island Unit 1) showed: 

 

Table 6. 

Index Suizhong Power 

Plant (China) 

U.S. Typical Plant Difference Drivers 

Retrofit Investment $28 million $32 million U.S. labor costs (2× 

higher) + import 

tariffs (5%) 

Annual Energy 

Savings 

12.6 million (coal cost: 

100/t) 

18.4 million (coal cost: 

150/t) 

U.S. higher coal prices 

Annual IRA Subsidy N/A $7.83 million IRA policy incentives 

Annual Net Benefit 12.6 million - 4.8 

million (O&M) = $7.8 

million 

18.4 million + 7.83 million - 

5.6 million (O&M) = 20.63 

million 

IRA subsidies + higher 

energy savings 

Payback Period 5.8 years 4.2 years IRA subsidies shorten 

payback by 1.6 years 

Net Present Value 

(10-year, 8% discount 

rate) 

$42.3 million $78.5 million U.S. market’s higher 

economic returns 

 

6.3 Cross-Market Adaptability Recommendations 

To optimize U.S. market application: (1) Localize 

equipment production (e.g., partner with 

U.S.-based valve manufacturers) to reduce 

import costs by 15%. (2) Adjust spray cooling 

water consumption to meet U.S. EPA’s water 

efficiency standards (≤0.8 m³/MWh) by adding a 

closed-loop water recycling system. (3) Align 

control systems with U.S. grid standards (e.g., 

IEEE 1588 for time synchronization) to ensure 

compatibility with plant DCS. 

7. Conclusions and Future Work 

7.1 Conclusions 
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The LCA-IB Model achieves a prediction 

accuracy of 97.1%, providing a standardized, 

granular carbon accounting tool for thermal 

power air-cooling system retrofits. Its technical 

contribution coefficient resolves the ambiguity 

of traditional models, enabling targeted 

technology optimization. 

Spray cooling and counterflow/parallel flow 

switching are core carbon reduction drivers, 

contributing 80% of total ΔC. Their combination 

balances short-term cooling efficiency gains and 

long-term carbon reduction stability. 

The retrofit technology is highly compatible 

with the U.S. IRA policy, achieving a 4.2-year 

payback period in the U.S. 

market—outperforming domestic U.S. solutions 

and demonstrating strong global transfer 

potential. 

7.2 Limitations and Future Work 

Limitations: The model is validated only for 

coal-fired units; applicability to gas-fired units 

(lower carbon intensity) needs further testing. 

Embodied carbon calculation does not include 

decommissioning phase emissions (accounting 

for <2% of total life cycle carbon). 

Future Work: (1) Integrate graph neural 

networks (GNN) to optimize the technology 

contribution coefficient in real-time based on 

dynamic operating conditions (e.g., ambient 

temperature, load). (2) Expand case studies to 

U.S. plants to verify cross-regional adaptability. 

(3) Develop a web-based carbon accounting tool 

to simplify model application for plant 

operators. 
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