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Abstract

Recommender systems have evolved into adaptive infrastructures that mediate human attention,
learning, and decision-making across digital environments. This paper presents a mechanistic analysis
of how algorithmic reinforcement processes co-evolve with user preferences, producing a progressive
reduction in informational diversity. By conceptualizing recommendation as a coupled dynamical
system, the study explains how reinforcement learning architectures internalize behavioral feedback
and transform transient user interactions into long-term preference structures. The analysis identifies
a recursive mechanism in which both algorithmic policies and user cognition adapt toward
equilibrium states that maximize predictability and engagement at the expense of novelty. Empirical
findings and theoretical models from recent reinforcement learning research are synthesized to
elucidate the dynamics of diversity loss as an emergent property of co-adaptation. The paper proposes
a mechanistic framework that integrates stochastic exploration, entropy regularization, and temporal
reward shaping to sustain informational variety in reinforcement-driven ecosystems. This approach
reconceptualizes recommender systems as co-evolutionary environments where the preservation of
diversity is a structural necessity for epistemic resilience, cognitive openness, and sustainable
engagement.
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1. Introduction reinforcement emerges when these cycles
continuously adjust recommendations based on
observed responses, embedding the history of
user engagement into the architecture of the
system itself. The mechanism transforms
transient preferences into persistent behavioral
patterns, aligning exposure to content that
maximizes predicted satisfaction or attention.
Over repeated iterations, the recommender’s

Recommender systems shape much of
contemporary digital experience by filtering,
ranking, and suggesting information according
to individual behavioral traces. These systems
translate human activity into quantifiable
signals that inform future algorithmic decisions,
producing a recursive cycle of interaction
between user and model. Algorithmic



optimization objectives begin to steer the
evolution of user tastes, creating a co-dependent
dynamic in which algorithms both reflect and
construct preference landscapes.

As this interaction intensifies, a structural
narrowing of informational diversity occurs. The
user’s choice space becomes progressively
confined to familiar categories because the
system interprets consistency as preference
certainty. Engagement-driven  optimization
accentuates this contraction, since content that
diverges from prior patterns yields lower
immediate reward signals. The loss of diversity
manifests not only in the reduction of novel or
unexpected items but also in the attenuation of
cognitive variety, where users encounter fewer
distinct  perspectives  or Such
homogenization represents a form  of
algorithmic path dependence, where early
behavioral signals disproportionately influence
long-term exposure trajectories.

genres.

A mechanistic understanding of this process
requires examining the interplay between
learning algorithms, feedback design, and user
cognition. Reinforcement learning agents
operate through the maximization of cumulative
reward functions, while users respond through
evolving attention and interest parameters. Each
click, skip, or linger constitutes a data point in a
continuous adaptive system. Over time, the
optimization of engagement metrics induces
emergent properties that are not explicitly
programmed, such as polarization or preference
ossification. The recommender thus becomes an
active participant in shaping the informational
environment, operating within a feedback
architecture  that couples computational
efficiency with human behavioral plasticity.

2. Algorithmic Reinforcement Dynamics

At the algorithmic level, reinforcement learning
has become central to the design of modern
recommender systems because it provides a
structured paradigm for modeling sequential
decision-making under uncertainty. In this
setting, each recommendation constitutes an
action, and each user response —whether a click,
dwell, or skip—serves as a reward that updates
the system’s policy. The recursive adaptation of
the algorithm produces a continuous feedback
loop in which the model both learns from and
reshapes user behavior. This process has been
extensively documented in reinforcement
learning-based recommender surveys such as
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Afsar et al. (2022), which describe how
engagement-maximizing  policies tend to
overemphasize  short-term  gains  while
diminishing exposure diversity.

The core of algorithmic reinforcement lies in the
definition of its reward structure. Conventional
designs prioritize immediate engagement
signals, often ignoring the long-term diversity of
user experience. Such optimization biases can
induce mode collapse, a state in which the system
repeatedly selects from a narrow set of
high-reward items. In studies by Lin et al
(2023), actor-critic architectures used in deep
reinforcement learning recommender systems
exhibit strong tendencies toward reward
overfitting, ~where the model reinforces
repetitive exposure to previously popular
content. These findings illustrate how
algorithmic reinforcement transforms localized
behavioral regularities into systemic
recommendation biases.

A deeper mechanistic understanding requires
examining how different reinforcement learning
formulations  affect  diversity = outcomes.
Policy-gradient algorithms adjust parameters by
estimating gradients of expected returns, while
value-based methods such as Deep Q-Networks
assigh  numerical  value to  discrete
recommendation  options.  Although both
methods optimize long-term user satisfaction in
theory, in practice they gravitate toward
strategies that replicate familiar interaction
patterns. Zou et al. (2019) show that optimizing
for cumulative engagement without temporal
discounting leads to reinforcement of repetitive
behaviors rather than exploration of new
content spaces. This effect demonstrates that
algorithmic reinforcement, when guided by
narrowly defined reward signals, tends to
amplify preexisting behavioral biases rather
than diversify them.

Architectural features within deep models

further intensify this convergence.
Embedding-based recommendation systems
learn latent representations that capture

correlations among users, items, and contextual
factors. When reinforcement updates operate
within these compressed manifolds, the model
gradually collapses onto regions of the latent
space that correspond to high-probability,
high-reward interactions. Studies such as Yu et
al. (2024) propose modified reward structures
that integrate diversity and novelty metrics
directly into the reinforcement objective,



demonstrating measurable improvements in
content variety without substantial losses in
predictive accuracy.

Algorithmic reinforcement dynamics therefore
encompass not only a computational
optimization process but a co-evolutionary
mechanism linking machine learning
parameters to human behavioral tendencies.
Each iteration of feedback stabilizes mutual
expectations between system and user, reducing
uncertainty while constraining variability. The
emergent equilibrium reflects a convergence of
algorithmic learning and human preference
formation. Diversity loss thus becomes a
structural byproduct of adaptive
optimization—a form of informational entropy
reduction  within  the  human-algorithm
ecosystem, as also noted by Zhao et al. (2025) in
their comprehensive analysis of fairness and

diversity = trade-offs in  recommendation
algorithms.
In practical implementations, deep

reinforcement learning architectures such as
actor—critic models and  policy-gradient
algorithms demonstrate strong sensitivity to the
structure of historical data. These architectures
optimize policies by evaluating the expected
return of each action sequence, yet their
dependence on previously observed reward
distributions  produces a narrowing of
exploration space. The agent learns to exploit
the most predictable regions of user behavior
because those regions offer the highest
cumulative reward signal. When applied to
recommender systems, this process intensifies
the repetition of familiar content and suppresses
the discovery of less represented items. Lin et al.
(2023) identify this as a manifestation of
overfitting within the reinforcement framework,
where the model’s learned policy becomes
confined to historical engagement patterns. Such
confinement reduces informational entropy in
the  recommendation  process,  creating
deterministic cycles of exposure that reinforce
prior user trajectories.

The mechanism of overfitting in reinforcement
recommenders originates in the structure of the
reward gradient. Actor—critic models update
both policy and value networks based on
observed feedback. When user interactions are
concentrated in narrow behavioral clusters, the
agent’s reward landscape becomes steep around
these dominant actions. This leads to a
disproportionate ~ update = magnitude  for
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frequently rewarded items and minimal
parameter adjustment for novel or uncertain
content. The result is a rapid convergence
toward exploitation. Empirical evidence
suggests that such convergence diminishes
system robustness by amplifying homogeneity
in user experiences and weakening long-term
engagement stability.

To mitigate this, recent research explores
multi-objective reinforcement learning frameworks
that balance accuracy with novelty and diversity.
Stamenkovic et al. (2022) propose auxiliary loss
functions that integrate diversity-aware reward
terms into the training process. These
formulations optimize for both relevance and
entropy, allowing the system to maintain
recommendation precision while sustaining
exposure to new information. By incorporating
diversity constraints into the reinforcement
objective, the model learns to navigate a broader
state—action space, countering the collapse
toward high-reward attractors. This adjustment
transforms the algorithm’s learning trajectory
from a purely exploitative regime toward a
balanced adaptive system that values
informational variety as part of its optimization
landscape.

3. Mechanistic
Preferences

Co-Evolution of User

User preferences evolve through an intricate
process of continuous interaction with
algorithmic environments. Each
recommendation presented to a user represents
not only a predictive output of the system but
also a behavioral input that shapes subsequent
algorithmic decisions. This recursive interaction
establishes a coupled feedback mechanism in
which human cognition and computational
inference co-regulate one another. The user’s
attention, emotion, and memory interact with
the algorithm’s reward and policy structures,
producing a cycle of mutual adaptation.
Empirical research by Moller et al. (2020) shows
that personalized recommendation processes in
news and media contexts systematically narrow
users’ informational exposure. The mechanism is
not the direct result of deliberate design but
arises from the inherent feedback structure of
the system itself, where repetitive exposure
subtly shifts user expectations of relevance.

The co-evolution of user preferences can be
understood as an emergent property of coupled
dynamical systems. In such systems, the



algorithm’s policy update function and the
user’s preference formation process operate as
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interacting  equations  that
influence each other’s parameters.

continuously

Table 1. A Comparative Summary of Algorithmic and Human Adaptation Mechanisms in the
Co-Evolution Process

Mechanistic Algorithmic Adaptation | User Adaptation Emergent Effect
Dimension (System) (Human)
Learning Rule Gradient-based policy Cognitive Feedback amplification
update reinforcement through
exposure
Objective Function Maximization of Minimization of Mutual predictability
engagement reward cognitive effort
Memory Dynamics Weighted by recent Shaped by repetition Preference
interactions and familiarity consolidation
Exploration Decreases over Decreases as novelty Reduced informational
Tendency optimization cycles perception declines entropy
Adaptation Speed High (batch or real-time Moderate (habit Temporal coupling and
updates) formation) equilibrium
Each round of interaction—comprising that such preference consolidation results from

recommendation, evaluation, and behavioral
response—modifies the internal state of both
components. The recommender updates its
policy based on perceived engagement value,
while the user’s perceptual schema adapts to the

regularities of exposure. Over successive
iterations, the joint system begins to
self-organize into stable attractor states

characterized by high predictability and low
diversity. These attractors represent equilibrium
configurations where the mutual reinforcement
between algorithm and user produces minimal
uncertainty.

Cognitively, this process manifests through
phenomena such as confirmation bias and
habituation. When an algorithm repeatedly
presents content consistent with established
preferences, the user’s attentional filters become
attuned to those patterns. Novel or dissonant
information  receives  reduced  cognitive
processing, diminishing the likelihood of
behavioral signals that could trigger algorithmic
exploration. The recommender interprets this
decline in engagement as evidence of
irrelevance, which leads to further suppression
of novel content. Over time, this creates a form
of perceptual canalization, where the boundaries
of curiosity and interest contract around the
dominant themes reinforced by the system.
Research on adaptive personalization suggests

reinforcement contingencies at both the neural
and computational levels, as attention and
prediction error jointly stabilize around familiar
stimuli.

At the system level, co-evolution produces
measurable consequences for informational
diversity and social epistemology. When
aggregated across millions of users, individual
preference  reinforcement can  amplify
macro-scale polarization. Distinct clusters of
users evolve along separate attractor pathways,
each governed by different feedback parameters
within the same underlying algorithmic
architecture. The emergent segmentation of
audiences reflects the self-organizing properties
of the coupled human-machine ecosystem. This
pattern has been observed in large-scale
simulations of user-algorithm interactions,
where even neutral recommendation policies
lead to polarized equilibria when user
adaptation dynamics are included in the model.
Studies such as Zou et al. (2019) provide
evidence that feedback reinforcement on
engagement-driven  platforms  accentuates
divergence between groups while reducing
diversity within them.

The mechanistic view of co-evolution reveals
that diversity loss is not a secondary artifact but
an intrinsic outcome of adaptive feedback. The




user’s evolving cognitive model and the
recommender’s learning algorithm share the
same optimization direction toward
predictability and efficiency. Both agents, human
and computational, minimize uncertainty by
aligning their internal states. The mutual drive
for coherence and relevance transforms the open
space of potential experiences into a constrained
domain of familiar patterns. Sustaining diversity
within this framework requires interventions
that intentionally introduce stochasticity or
novelty into the recommendation process. The
challenge lies in designing adaptive systems that
respect user engagement while maintaining
informational entropy at levels that support
exploration and cognitive flexibility.

4. Diversity Loss and Systemic Implications

Diversity loss in recommender systems emerges
as a structural byproduct of optimization
processes that favor stability, efficiency, and
engagement. When the algorithm repeatedly
selects high-reward actions associated with
known wuser preferences, the variance of
recommendations gradually decreases. This
contraction of the recommendation space leads
to a reduction in informational entropy, a
measurable decline in the variety and novelty of
suggested items. The mechanism mirrors
biological systems that overexploit successful
survival strategies at the expense of genetic
variation. In recommender environments,
algorithmic exploitation accelerates convergence
toward predictable outcomes. The outcome is a
narrowing of exposure that not only limits user
discovery but also reshapes collective cultural
and informational ecosystems.

The loss of diversity results from the dominance
of short-term reward signals embedded within
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algorithmic objectives. Engagement metrics such
as click-through rate or watch duration are often
treated as proxies for satisfaction, yet they
capture only the surface dynamics of user
interaction. Zhao et al. (2025) show that systems
optimized solely for engagement tend to
produce homogeneous recommendation
distributions even when trained on diverse
datasets. This occurs because the gradient-based
optimization  process amplifies frequent
feedback patterns, suppressing low-frequency
but potentially meaningful signals. Once these
patterns dominate the policy space, the
algorithm enters a cycle of self-confirmation in
which diversity loss becomes an emergent
equilibrium rather than a correctable anomaly.

Efforts to reintroduce diversity often rely on
post-processing strategies or fairness
constraints. Antikacioglu and Ravi (2017)
demonstrate that network flow optimization can
redistribute  exposure across items and
categories with minimal sacrifice to predictive
performance. Such interventions, while effective
in controlled evaluations, operate downstream
of the reinforcement loop. They address the
visible outcomes of diversity loss without
altering its underlying causal mechanisms. Since
the root of the phenomenon lies in the
co-adaptive relationship between user feedback
and algorithmic reward, external rebalancing
techniques cannot produce long-term systemic
change. The optimization pressure that drives
convergence remains active, gradually eroding
post-hoc diversity adjustments.

Sustainable mitigation of diversity loss requires
integrating  diversity  directly into  the
algorithmic reward structure.

Table 2. Taxonomy of Diversity Intervention Strategies in Recommender Systems

Approach Type | Mechanism of Action

Representative Studies

Expected Outcome

Post-processing
(Re-ranking)

Adjusts item distribution
after recommendation

Antikacioglu & Ravi, 2017

Short-term diversity
increase, minimal
accuracy loss

Reward Embeds diversity into Yu et al., 2024 Balanced
Engineering reinforcement objective novelty-relevance
optimization
Regularization | Adds entropy or variance Zhao et al., 2025 Prevents
Techniques penalties to model loss over-concentration
in latent space
Stochastic Introduces probabilistic Zou et al., 2019 Sustains long-term




Journal of Progress in Engineering and Physical Science

Exploration decision noise user curiosity
Multi-agent Models diversity as emergent | Simulated studies in social | Systemic resilience
Interaction from multi-user dynamics recommender contexts and exposure variety

Yu et al. (2024) propose multi-objective
reinforcement  learning  frameworks  that
simultaneously optimize for relevance, novelty,
and fairness. These models redefine success by
assigning explicit value to informational variety.
By embedding entropy-related terms into the
reward function, the agent learns to associate
exploration with positive long-term return. Such
approaches extend the conceptual scope of
recommendation from accuracy maximization to
ecological balance within the informational
environment. The resulting policies exhibit
greater resilience to preference homogeneity and
more stable long-term engagement patterns.

At a systemic scale, diversity loss alters the
informational topology of digital ecosystems.
The contraction of exposure pathways reduces
cross-domain connectivity, ~weakening the
circulation of ideas and  diminishing
opportunities for serendipitous discovery. When
aggregated across populations, these effects
manifest as macro-level informational silos. The
system’s  optimization dynamics thereby
influence social cognition and collective
knowledge formation. Empirical analyses of
content recommendation in news and
entertainment contexts reveal that diminished
diversity correlates with higher polarization and
reduced epistemic breadth. The algorithmic
pursuit of engagement thus produces a feedback
loop that reconfigures cultural attention
landscapes into fragmented clusters.

The implications extend beyond user satisfaction
or content fairness. Diversity loss reshapes the
cognitive ecology of digital societies by altering
how individuals encounter novelty and form
judgments about relevance. A mechanistic
understanding of this process highlights the
inseparability of algorithmic design and human
behavior in shaping informational diversity. To
counteract systemic homogenization,
recommender systems must evolve toward
self-regulating  architectures that sustain
variability as an intrinsic property of learning
rather than an externally imposed constraint.
Embedding stochastic exploration, contextual
randomization, and dynamic novelty thresholds
into reinforcement learning policies can
maintain  informational  diversity =~ while

preserving personalization quality. These
adjustments mark a transition from reactive
correction to adaptive equilibrium, positioning
diversity as a foundational element of
algorithmic intelligence rather than a peripheral
metric of fairness.

5. Toward a Mechanistic Framework of
Co-Evolution

A mechanistic framework of co-evolution
between users and recommender systems begins
with the recognition that both entities operate as
adaptive agents interacting through feedback.
The algorithm functions as a learning agent
whose policy evolves through exposure to user
behavior, while the user adapts cognitively and
affectively in response to the system’s
recommendations. Each interaction modifies
both agents’ internal states, creating a
continuous exchange of information and
influence. When modeled mathematically, this
relationship can be expressed as a set of coupled
dynamical equations, where the gradient of
algorithmic policy updates is conditioned on
user response distributions, and the evolution of
user preferences depends on the temporal
structure of exposure. These coupled equations
describe a nonlinear system capable of
exhibiting emergent phenomena such as
stability, oscillation, and collapse, depending on
the Dbalance between exploration and
exploitation.

The process can be conceptualized as an
autocatalytic loop. Algorithmic outputs act as
catalysts that accelerate specific forms of user
learning, and user actions feed back into the
system as new data that reinforce algorithmic
adaptation. Over successive cycles, both agents
co-adjust toward equilibrium configurations in
which mutual predictability is maximized.
Within  this  equilibrium, diversity loss
corresponds to an entropic reduction, where the
system’s state space contracts into narrow basins
of attraction. Zhao et al. (2025) describe this
contraction as the systemic manifestation of
fairness-diversity trade-offs, arising not from
explicit bias but from the inherent optimization
structure of feedback-driven models. The
coupled system thus transitions from an




exploratory regime, rich in potential states, to an
exploitative equilibrium characterized by low
variability and high stability.

From a theoretical perspective, this dynamic
mirrors adaptive processes in biological and
ecological systems. In evolutionary biology,
diversity is maintained through mutation and
recombination that introduce stochasticity into
reproductive processes. A similar mechanism is
required in recommender ecosystems to avoid
informational monocultures. Controlled
stochastic exploration introduces variability into
algorithmic decision-making without
compromising predictive efficiency. Research in
multi-objective  reinforcement learning has
demonstrated that integrating randomness as a
structural parameter improves long-term
adaptability by preventing convergence to
narrow attractor basins. Adaptive regularization
schemes, inspired by mutation in population
dynamics, can function as a diversity-preserving
mechanism by continuously perturbing the
policy landscape. Such perturbations enable the
system to escape local optima and sustain the
flow of novel experiences for users.

The mechanistic framework also requires
modeling the temporal interdependence
between preference formation and

recommendation generation. Zou et al. (2019)
show that long-term user engagement can be
optimized through reinforcement models that
discount immediate rewards in favor of delayed
satisfaction. Introducing temporal discount
factors  alters the geometry of the
co-evolutionary system, elongating the feedback
horizon and promoting sustained diversity in
exposure. The inclusion of time-sensitive reward
shaping transforms the coupled system from a
reactive to an anticipatory mode, where the
algorithm seeks trajectories that maintain user
curiosity across extended interactions.

A  mechanistic framework of co-evolution
therefore integrates principles of dynamical
systems theory, evolutionary computation, and
behavioral modeling into a unified analytic
structure. It conceptualizes the recommender
ecosystem as a self-organizing field of
interactions rather than a one-directional flow
from data to prediction. Diversity loss becomes
interpretable as a phase transition, in which the
feedback  architecture of  user-algorithm
interaction passes from a state of high entropy
and flexibility to one of low entropy and rigidity.
To sustain equilibrium between adaptability and
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stability, recommender systems must be
designed to maintain dynamic diversity as an
endogenous property. Such systems would not
merely mitigate bias or increase novelty but
would continually regenerate informational
variation through self-regulated exploration.
This orientation represents a shift from static
optimization toward co-evolutionary
intelligence, where algorithmic and human
learning processes evolve in tandem to preserve
both engagement and epistemic openness.

6. Conclusion

Algorithmic reinforcement and the co-evolution
of user preferences form an adaptive system
characterized by interdependence, feedback
sensitivity, =~ and emergent order. The
recommender algorithm learns from behavioral
traces while simultaneously constructing the
conditions under which those behaviors occur.
This duality transforms recommendation from a
predictive problem into an ecological process,
where patterns of attention, curiosity, and
exposure evolve through continuous mutual
influence. Diversity collapse within such a
system represents a structural manifestation of
its learning dynamics rather than an incidental
outcome. =~ When optimization objectives
prioritize short-term engagement, the system’s
adaptive capacity narrows. The loss of
informational diversity signifies a reduction in
the system’s entropy, a contraction of the
possible trajectories through which users and
algorithms can co-adapt.

A mechanistic analysis of this phenomenon
reveals the intrinsic coupling between
algorithmic design and cognitive evolution.
Reinforcement learning models define reward
functions that encode implicit value systems,
shaping how users encounter information and
interpret relevance. Behavioral feedback loops

translate individual actions into
population-level signals that guide model
updates. Over repeated iterations, this

alignment between machine inference and
human response leads to a systemic equilibrium
that privileges predictability. Diversity loss thus
emerges as a property of stability within the
coupled human-algorithm environment. It
reflects the success of optimization in achieving

coherence while failing to preserve the
variability =~ required for exploration and
discovery.

Integrating diversity into the core architecture of



recommender systems requires a redefinition of
optimization itself. Diversity cannot remain an
auxiliary metric applied after relevance is
maximized. It must be treated as an essential
dimension of value alongside accuracy,
satisfaction, and fairness. = Multi-objective
reinforcement learning frameworks demonstrate
that diversity can coexist with engagement
when treated as part of the reward structure.
Systems designed with adaptive stochasticity,
entropy  regularization, and  temporally
extended objectives can sustain variation
without sacrificing efficiency. Such architectures
transform recommendation from a static
feedback engine into a dynamic learning
ecosystem capable of self-regulation and
renewal.

The ethical implications of this transformation
extend beyond algorithmic performance.
Diversity preservation concerns the integrity of
collective cognition and the resilience of digital
culture. Recommender systems now act as
infrastructure for knowledge formation, shaping
what societies learn and how they perceive the
world. A loss of diversity within these
infrastructures narrows the horizon of public
imagination and reduces exposure to alternative
perspectives.  Mechanistic =~ awareness  of
co-evolution offers a pathway toward corrective
design,  emphasizing  equilibrium  over
dominance and plurality over optimization
singularity.

Recommender systems that internalize diversity
as a structural principle will not simply deliver
content more equitably; they will cultivate
environments in which users remain open to
uncertainty and novelty. Such systems embody
an epistemic ethic grounded in balance, where
engagement does not preclude exploration and
personalization does not erase variation. The
co-evolution of human and algorithmic
intelligence then becomes a process of shared
adaptation that sustains cognitive richness,
cultural multiplicity, and long-term
informational resilience.
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