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Abstract 

Purpose: To construct a fusion model for predicting CDKN2A/B homozygous deletion status in 

patients with isocitrate dehydrogenase (IDH)-mutant diffuse astrocytoma by combining the radiomics 

features and deep learning (DL). Methods: A total of 200 IDH-mutant astrocytoma (103 CDKN2A/B 

homozygous deletion (HD) and 97 CDKN2A/B non-homozygous deletion (NHD)) patients were 

retrospectively enrolled in the training cohort (n = 140) and the external test cohort (n = 60) for the 

prediction of CDKN2A/B homozygous deletion status in patients with IDH-mutant astrocytoma. DL 

model was constructed by SE-Net model, radiomics features of different regions (edema, tumor and 

overall lesion) were extracted using Pyradiomics, and radiomics model was built by selecting 4 

features in the edema region and 7 features in the tumor region by the least absolute shrinkage and 

selection operator (LASSO). Finally, a fusion model was jointly constructed by the DL model, 

radiomics model, and clinical features. The predictive performance of the 3 models was evaluated 

using calibration curves and decision curves, and compared with the fusion model. Results: Based on 

the results of the different models, we finally selected a fusion model consisting of DL model, 

radiomics model, and clinical features. The fusion model showed the best performance with an area 

under the curve (AUC) of 0.958 in the training cohort and 0.914 in the test cohort. Conclusions: The 
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clinical fusion model based on radiomics features and DL features showed good performance in 

predicting CDKN2A/B homozygous deletion status in patients with IDH-mutant diffuse astrocytoma. 

Key Points: 1) Used DL and radiomics to non-invasively predict the CDKN2A/B homozygous deletion 

status. 2) The model can predict CDKN2A/B homozygous deletion status in IDH-mutant astrocytoma 

patients. 3) Our result improved classification accuracy and demonstrated better performance in the 

fusion model. 

Keywords: glioma, radiomics, deep learning, Cyclin-Dependent Kinase Inhibitor 2A/B(CDKN2A/B) 

 

 

 

1. Introduction 

Glioma is the most common primary malignant 

brain tumor in adults (Ostrom QT, Gittleman H, 

Truitt G, et al., 2018). Astrocytoma, IDH-mutant, 

is a glioma subtype, defined as an IDH mutation, 

excluding the combination of 1p and 19q 

whole-arm deletions (Ostrom QT, Gittleman H, 

Truitt G, et al., 2018). In the fifth edition of the 

World Health Organization (WHO) 

classification of Central Nervous System (CNS) 

tumors published in 2021, this subtype was 

listed as a single type according to histological 

morphology and molecular characteristics 

(Louis DN, Perry A, Wesseling P, et al., 2021; 

Louis DN, Giannini C, Capper D, et al., 2018). 

CDKN2A/B (Cyclin-dependent kinase inhibitor), 

which is a cell-cycle regulator, is associated with 

poor prognosis in a number of other tumors, 

including ovarian (Xia L, Zhang W & Gao L., 

2019), melanoma (Guo Y, Long J & Lei S., 2019), 

and bladder cancer. IDH-mutant astrocytoma 

with homozygous deletion of CDKN2A/B have 

the worst prognosis, and thus are classified 

directly into WHO grade 4, regardless of 

histological appearance (Louis DN, Perry A, 

Wesseling P, et al., 2021). Thus, the prediction of 

CDKN2A/B homozygous deletion is essential 

for the evaluation of prognosis and management 

of IDH-mutant astrocytoma. 

CDKN2A/B homozygous deletion is usually 

detected using FISH, qPCR, or methylation chip 

techniques, but these techniques are invasive 

methods based on surgical excision or biopsy 

(Lu VM, O’Connor KP, Shah AH, et al., 2020). In 

addition, sampling accuracy is greatly affected 

by temporal and spatial heterogeneity (Fack F, 

Tardito S, Hochart G, et al., 2017). Therefore, it is 

necessary to develop a reliable, non-invasive, 

and reliable presurgical approach for the 

identification of CDKN2A/B homozygous 

deletion status in patients with IDH-mutant 

astrocytoma. MRI is a non-invasive method that 

has been widely used to diagnose and locate 

gliomas, because many of its radiomics 

signature are related to the genomic changes of 

gliomas (Ellingson BM., 2015), and can 

significantly improve the diagnostic efficiency of 

tumor typing by reflecting the pathology of the 

lesions (Wei J, Yang G, Hao X, et al., 2019; Ren Y, 

Zhang X, Rui W, et al., 2019; Liang S, Zhang R, 

Liang D, et al., 2018). DL and radiomics based 

on MRI have been extensively studied in the 

differential diagnosis, grading, genotyping, and 

prognosis of gliomas (Qian Z, Li Y, Sun Z, et al., 

2018; Buda M, AlBadawy EA, Saha A & 

Mazurowski MA., 2020; Matsui Y, Maruyama T, 

Nitta M, et al., 2020). For example, DL and 

radiomics methods have good diagnostic 

performance and high accuracy in predicting 

gliomas IDH status, 1p/19q codeletion status 

and O6-methylguanine-DNA-methyltransferase 

(MGMT) promoter methylation status (Choi YS, 

Bae S, Chang JH, et al., 2021; Chang P, Grinband 

J, Weinberg BD, et al., 2018; Sun C, Fan L, Wang 

W, et al., 2022; Cao M, Suo S, Zhang X, et al., 

2021). Additionally, visually accessible 

rembrandt images (VASARI) is a comprehensive 

feature set with high reproducibility, and it has 

been shown that some of the features in VASARI 

can predict gene status in gliomas with good 

performance (Clark K, Vendt B, Smith K, et al., 

2013; Arita H, Yamasaki K, Matsushita Y, et al., 

2016; Arita H, Kinoshita M, Kawaguchi A, et al., 

2018; Avants BB, Tustison NJ, Song G, et al., 2011; 

Shinohara RT, Sweeney EM, Goldsmith J, et al., 

2014). 

In the present study, we intend to combine DL 

and radiomics to extract deep features of glioma 

MR images, and then add VASARI related 

clinical information to the fusion model, with 

our ultimate goal to develop and validate a 

model that can noninvasively predict 

CDKN2A/B homozygous deletion status in 

patients with IDH-mutant astrocytoma. 
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2. Materials and Methods 

2.1 Patient Enrollment and Image Acquisition 

The MRI data and clinicopathological 

information were derived from the Cancer 

Imaging Archive (TCIA)/ the Cancer Genome 

Atlas (TCGA) and the First Affiliated Hospital of 

Chongqing Medical University (Clark K, Vendt 

B, Smith K, et al., 2013; Ceccarelli M, Barthel FP, 

Malta TM, et al., 2016). Inclusion and exclusion 

criteria were as follows: Case inclusion criteria: 

(1) IDH-mutant astrocytoma confirmed by 

pathology; (2) Conventional MRI sequences, 

including T2 fluid-attenuated inversion recovery 

(T2-FLAIR) and contrast-enhanced T1 weighted 

imaging (CE-T1WI); (3) available CDKN2A/B 

homozygous deletion status information; (4) 

available clinical characteristics, including age, 

gender, tumor location, degree of enhancement, 

percentage of edema, etc. Exclusion criteria: (1) 

images with serious artifacts; (2) previous 

radiotherapy, stereotactic radiosurgery, 

anti-vascular therapy or surgical treatment; (3) 

The homozygous deletion status of CDKN2A/B 

was unknown. A total of 200 patients was 

shuffled and split into a training cohort 

(CDKN2A/B homozygous deletion (HD): n=71) 

VS CDKN2A/B non-homozygous deletion 

(NHD): n=69), and a test cohort (CDKN2A/B HD: 

n= 32) VS CDKN2A/B NHD: n=28) at a ratio of 

7:3. 

2.2 Selection of Clinical Variables 

We selected six semantic descriptors of image 

features from VASARI annotations based on MR 

imaging findings of high-grade gliomas: f4, 

Enhancement quality; f7, Proportional necrosis; 

f11, Thickness of enhancement margins; fl2, 

Definition of enhancement margin; f14, 

Proportion of edema; and f15, Crosses edema. 

(In the following table, it is successively 

expressed as Intensity, Necrosis percentage, 

Edge thickness, Edge definition, Edema 

percentage, and Edema midline). Each tumor 

was independently scored by a radiologist (Xu) 

and a radiologist (Wen). VASARI scores were 

used as clinical variables along with age, gender, 

and WHO classification. 

2.3 Data Preprocessing and Segmentation 

We pre-processed all images, including bias 

correction, registration and intensity 

normalization, to reduce the variation in the use 

of imaging parameters between hospitals. We 

performed a mixed white stripe method using 

the ANTsR and white stripe packages in R to 

perform intensity normalization, incorporating a 

statistically principled process of image 

normalization that preserves inter-tissue grades 

and matches tissue strength without disrupting 

the natural balance of tissue strength (Shinohara 

RT, Sweeney EM, Goldsmith J, et al., 2014; Wang 

R, Chaudhari P & Davatzikos C., 2021; Egger J, 

Kapur T, Fedorov A, et al., 2013). We rigidly 

aligned each subject’s image volume to 

T2-FLAIR, and resampled to isotropic resolution 

using a linear interpolator to re-interpolate all 

images to 1mm × 1mm × 1mm pixels in the 

normalized axes.  

Semi-automatic segmentation was performed on 

T2-FLAIR sequences using the 3D slicer (version 

4.3, https://www.slicer.org) (Egger J, Kapur T, 

Fedorov A, et al., 2013), as T2-FLAIR sequences 

were widely accepted in identifying glioma 

boundaries. Two radiologists who had 10 years 

of experience separated the tumor profile by 

hand and ignore the final pathological outcome. 

The internal correlation coefficient (ICC) was 

used to assess the consistency of observations 

among observers. ICC≤0.40 indicates poor 

consistency, 0.40<ICC≤0.75, and high consistency 

of ICC is more than 0.75. The region of interest 

(ROI) excludes the worst and best slices that 

include these structures, to minimize partial 

volume effects (Egger J, Kapur T, Fedorov A, et 

al., 2013). If the split is below 5%, the final ROI is 

defined as the overlap zone of both ROIs. 

Otherwise, it is decided by the third highly 

experienced radiologist. 

Slices with the largest tumor area were selected 

from CE-T1WI and T2-FLAIR respectively 

according to the sectioned mask files, and ROI 

regions were clipped out from them. The 

clipped slices were converted into JPG images 

and enlarged to 224x224 to adapt to the input of 

the DL model. Random flipping, scaling and 

contrast enhancement were used to enhance the 

data, and the number of images was expanded 

to reduce the overfitting during model training. 

The process of the whole experiment after image 

pre-processing is shown in Figure 1. 
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Figure 1. The experimental workflow is divided into four steps: ROI segmentation acquisition, 

radiomics model construction, deep learning model construction, and predictive model analysis 

 

2.4 Clinical Model Building 

Clinical variables included age, gender, WHO 

grading, tumor centroid site, tumor location, 

and 6 characteristics as measured by the 

VASARI score. We constructed clinical models 

using univariate and multivariate logistic 

regression. First, univariate logistic regression 

was used to select the clinical features, and the 

variables with p<0.05 were considered to be 

statistically significant. Then, a clinical 

prediction model was built with multivariate 

logistic regression. The prediction ability of the 

clinical model was described by the receiver 

operating characteristic curves (ROC). 

2.5 DL-Based Model Building 

ResNet has been widely used in various medical 

image tasks, and it has good classification 

performance. The SE-Net model used in this 

experiment is an improved version based on 

ResNet, which adds a lightweight attention 

branching structure to the original ResNet. 

Previous studies of convolution usually focus on 

the correlation of spatial information, while 

SE-Net can enhance the overall performance of 

the model by modeling the correlation between 

feature channels and reinforcing the important 

features. 

The pictures in the training cohort are expanded 

by cropping, zooming, flipping and contrast 

enhancement techniques, and each picture is 

enhanced by 4 times, and the test cohort does 

not perform data expansion. Then the picture is 

input into the network for training. After the 

network passes through a series of convolutional 

layers, the final predicted class probability is 

output by the fully connected layer. 

We used an Adam optimizer with an initial 

learning rate of 0.001, β1 of 0.9 and β2 of 0.999, 

using cross entropy as a loss function and 

batch-size of 32, and stopping the training when 

the accuracy of the test cohort was stable. The 

model was implemented on the PyTroch 

framework 1.10.0 and python3.7.0, and the GPU 

is GeForce RTX 3080. 

2.6 Radiomics-Based Model Building 

We used Pyradiomics to extract radiomics 

features. 993 features were extracted from the 

edema and tumor regions of CE-T1WI and 

T2-FLAIR sequences respectively, including 

first-order statistical features, shape and 

intensity features, high-order texture features 

such as gray-level cooccurrence matrix (GLCM), 

gray-level run-length matrix (GLRLM), 

gray-level size zone matrix (GLSZM), gray-level 

dependence matrix (GLDM) and neighborhood 

gray-tone difference matrix (NGTDM). 

To reduce the size of the features and improve 

the generalization of the model, we first used the 

Student’s t-test to filter the features, selected the 

significant features with p<0.05, and then used 

LASSO to further reduce the dimension, and 

determined the most optimal model after 10-fold 
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cross-validation. The hyperparameter lambda, 

and then select a subset of features whose 

coefficients are not 0 to build a radiomics model. 

2.7 Fusion Model 

Based on the idea of ensemble learning, we 

combined the prediction results of clinical 

features, DL and radiomics models to construct 

the final multiple logistic regression model for 

predicting CDKN2A/B homozygous deletion 

status. A nomogram was used to describe the 

relationship among the variables, and 

calibration and decision curves were used to 

evaluate the predictive performance of the 

models. 

2.8 Statistical Analysis 

All statistical analyses were performed with R 

software (version 4.2.0, 

https://www.rproject.org/). For continuous 

variables, the t-test or Mann-Whitney U-tests 

were used, and the classification of variables 

was chi-squared. All the statistical tests were 

two-sided, and the statistical significance was 

p<0.05. 

3. Results 

3.1 Clinical Characteristics 

Details of patient characteristics are summarized 

in Table 1. Age (p = 0.872), gender (p = 0.427), 

and WHO grading (p = 0.331) was not 

significantly different, but there were significant 

differences on the side (p<0.05). In the training 

cohort, the definition of enhancement margin, 

thickness of enhancement margins and 

proportional necrosis have significant 

differences (p<0.05).  

 

Table 1. The clinical characteristics of patients in the training and test cohorts 

Clinical 

characteristics 

Training cohort(N=140) Test cohort(N=60) P(Inter) 

HD(n=71) NHD(n=69) p(Intra) HD(n=32) NHD(n=28) p(Intra)  

Age   0.124   0.943 0.821  

<52 41(57.75) 30(43.48)  17(56.67) 12(42.86)   

≥52 30(42.25) 39(56.52)  15(43.33) 16(57.14)   

Gender   0.927   0.321 0.427  

Male 39(54.93) 34(49.28)  14(43.75) 17(60.71)   

Female 32(45.07) 35(50.72)  17(56.25) 11(39.29)   

WHO grading   0.443   0.526 0.331  

2-3 38(53.52) 45(65.22)  11(34.38) 12(42.86)   

4  33(46.48) 24(34.78)  21(65.63) 16(57.14)   

Side   0. 123   0.512 <0.05 

left 31(43.66) 33(47.83)  12(37.50) 16(57.14)   

right 40(56.34) 36(52.17)  20(62.50) 12(42.86)   

Location   0.098   0.332 0.313  

occipital 19(26.76) 17(24.64)  7(21.88) 6(21.43)   

temporal 18(25.35) 19(27.54)  5(15.63) 7(25.00)   

parietal 21(29.58) 18(26.09)  9(28.13) 5(17.86)   

frontal 13(18.31) 15(21.74)  11(34.38) 10(35.71)   

Edge definition   <0.05   0.562 0.421  

Well-defined 34(47.89) 37(53.62)  13(40.62) 14(50.00)   

Poorly-defined 37(52.11) 32(46.38)  19(59.38) 14(50.00)   
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Clinical 

characteristics 

Training cohort(N=140) Test cohort(N=60) P(Inter) 

HD(n=71) NHD(n=69) p(Intra) HD(n=32) NHD(n=28) p(Intra)  

Edema midline   0.674   0.433 0.341  

No 36(50.70) 36(52.17)  16(50.00) 16(57.14)   

Yes 35(49.30) 33(47.83)  16(50.00) 12(42.86)   

Intensity 2.13±0.3 2.39±0.4 0.6 2.18±0.31 2.2±0.31 0.43 0.822 

Edge thickness 3.22±0.42 3.25±0.38 <0.05 3.53±0.3 3.33±0.59 0.144 0.431 

Necrosis percentage 5.42±0.52 4.74±0.33 <0.05 5.42±0.75 4.32±0.73 0.218 0.252 

Edema percentage 4.34±0.5 4.54±0.5 0.321 4.35±0.52 4.43±0.26 0.045 0.347 

 

The clinical features were analyzed by 

univariate and multivariate logistic regression, 

and the results were presented in Table 2. We 

selected 3 clinical features with p<0.05: age, 

definition of enhancement margin and 

proportional necrosis to construct the clinical 

prediction model.  

 

Table 2. Univariate and multivariate analysis of clinical characteristics 

 
Univariate Multivariate 

OR(95%CI) P value OR(95%CI) P value 

Age 0.96(0.41-2.1) ＜0.05 0.96(0.41-2.1) ＜0.05 

Gender 0.93(0.42-2.12) 
 

0.65 0.52 (0.19-1.61) 
 

0.41 

WHO grading 1.81(0.61-4.21) 
 

0.32 1.32 (0.43-6.21) 
 

0.25 

Side 0.53(0.18-1.24) 
 

0.25 0.41 (0.26-1.62) 
 

0.42 

Location 1.12 (0.41-3.21) 
 

0.91 2.21 (0.42-4.2) 
 

0.46 

Edge definition 4.41 (3.2-10.1) 
 

＜0.05 8.42 (2.19-21.1) 
 

＜0.05 

Edema midline 1.0 (0.45-2.7) 
 

0.743 1.02 (0.44-2.82) 
 

0.78 

Intensity 1.1 (0.51-2.2) 
 

0.723 1.1(0.29-2.72) 
 

0.342 

Edge thickness 3.2 (2.1-10.1) 
 

0.241 2.51 (1.3-11.2) 
 

0.421 

Necrosis percentage 1.1 (1.2-4) 
 

＜0.05 1.84 (1.42-3.43) 
 

0.442 

Edema percentage 1.42(0.61-2.91) 0.231 3.21(1.41-9.81) 0.21 

 

3.2 Predictive Performance of the Clinical, DL, 

Radiomics and Fusion Models 

A multivariate logistic regression model was 

constructed using the screened clinical 

characteristics. Figure 2A shows that the AUCs 

of the clinical model in the training cohort and 

test cohort are 0.826 (95%CI: 0.745-0.909) and 

0.659 (95%CI: 0.514-0.801), respectively. Figure 

2B shows that the AUCs of the DL model in the 

training cohort and test cohort are 0.873 (95%CI: 

0.818-0.931) and 0.774 (95%CI: 0.634-0.871), 

respectively. Table 3 summarizes the predictive 

performance of each model.
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Figure 2A. The ROC curve of clinical model in the training cohort and test cohort 

 

Figure 2B. The ROC curve of DL model in the training cohort and test cohort 
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Figure 2C. The ROC curve of radiomics models of edema region and tumor region in the training 

cohort 

 

Figure 2D. The ROC curve of radiomics models of edema region and tumor region in the test cohort 

 

Table 3. DL model, radiomics edema model, radiomics tumor model, radiomics fusion model, clinical 

model and fusion model performance 

Models Training cohort(N=140) Test cohort(N=60) 
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Sensitivity Specificity Accuracy AUC(95%CI) Sensitivity Specificity Accuracy AUC(95%CI) 

DL Model 0.838 0.864 0.872 0.873(0.818-0.931) 0.731 0.732 0.741 0.774(0.634-0.871) 

Radiomics 

Edema 
0.689 0.765 0.713 0.863(0.801-0.901) 0.616 0.853 0.652 0.823(0.723-0.941) 

Radiomics 

Tumor 
0.865 0.864 0.863 0.929(0.886-0.965) 0.715 0.821 0.759 0.840(0.737-0.950) 

Radiomics 

Fusion 
0.827 0.808 0.816 0.904(0.851-0.950) 0.611 0.861 0.704 0.865(0.764-0.962) 

Clinic 

Variable 
0.721 0.773 0.756 0.826(0.745-0.909) 0.628 0.665 0.666 0.659(0.514-0.801) 

Fusion 0.903 0.922 0.913 0.958(0.899-0.982) 0.804 0.903 0.838 0.914(0.816-0.987) 

 

For the DL model, we input the ROI images 

cropped from the CE-T1WI and T2-FLAIR 

sequences and used the SE-Net model to train in 

the training cohort for 26 epochs to achieve 

convergence, and the accuracy of the test cohort 

is 0.741. The ROC curve (Figure 2B) shows that 

the AUC of the DL model in the training cohort 

and the test cohort is 0.873 (95%CI: 0.818-0.931) 

and 0.774 (95%CI: 0.634-0.871), the DL model 

shows better predictive power than the clinical 

model. 

We extracted the radiomics features from the 

edema region and tumor region respectively, 

and constructed the tumor-based, edema-based 

and mixed region-based radiomics models. 

Figure 2C and 2D shows ROC curves of 

different types of radiomics models. The AUC of 

radiomics tumor model in test cohort was 

0.840(0.737-0.950), and the AUC of radiomics 

edema tumor model in test cohort was 

0.823(0.723-0.941). Then, we built a radiomics 

fusion model using 4 features from the edema 

region and 7 features from the tumor region, 

which further improved the predictive 

performance with an AUC of 0.865(0.764-0.962).  

To explore the impact of different models on the 

prediction of CDKN2A/B homozygous deletion 

status, we combined clinical features, DL model 

and radiomics model to construct a final fusion 

model. The AUC of the fusion model was 

0.914(0.816-0.987), and the accuracy was 0.838. 

After the Delong test, the clinical model and the 

fusion model had a significant difference 

(p<0.05). We drew the nomogram of the fusion 

model to show the value of predicting 

CDKN2A/B homozygous deletion status (Figure 

3A). The calibration curve showed that the 

fusion model had good predictive performance 

(Figure 3B), and the decision curve analysis 

(DCA) curve showed that the overall net benefit 

of the fusion model was better than any single 

model (Figure 3C). Figure 3D represented the 

risk stratification of 1000 people using the fusion 

model, showing the comparison between the 

number of people classified as high risk by the 

fusion model and the number of people who are 

actually high risk under different threshold 

probabilities. 



Current Research in Medical Sciences 

55 
 

 

 



Current Research in Medical Sciences 

56 
 

 

Figure 3 A. Clinical nomogram established using the fusion model; B. The calibration curves of the 

fusion model on the test set; C. DCA curves of the fusion model, overall hybrid and the clinic model, 

The X-axis means the threshold probability; the Y-axis shows the model benefit; D. The Clinical 

Impact Curve of the fusion model, the red curve (Number high risk) indicates the number of people 

who are classified as positive(high-risk) by the fusion model at each threshold probability; the blue 

curve (Number high risk with event) is the number of true positives at each threshold probability 

 

4. Discussion 

In this study, we combined DL, radiomics, and 

clinical information to build prediction models, 

and ultimately selected the optimal feature set of 

each fusion model for noninvasive prediction of 

CDKN2A/B homozygous deletion status in 

IDH-mutant astrocytoma. The results showed 

that the fusion model produced the best 

outcome in the forecast process, with AUC 

values of 0.958 and 0.914 for the training and test 

cohort. The fusion model can significantly 

improve the prediction performance of genetic 

biomarkers, and this noninvasive prediction is a 

promising approach in clinical practice. 

Previous studies have shown that 30-80% of 

glioma patients have mistakes or defects in the 

CDKN2 family of tumor suppressor genes 

(Sauerbrei W, Royston P & Binder H., 2007; 

Crespo I, Vital AL, Gonzalez-Tablas M, et al., 

2015). CDNK2A/B, which are located on 

chromosome 9, encode cyclin-dependent kinase 

inhibitors 2A-p16INK4a and 2B-p15INK4b, 

respectively, which inhibit the activity of CDK 

kinase and thereby control the progression of 

cell cycle G1 (Toyokuni S., 2010). Coin activation 

of CDKN2A/B is an inevitable event of cell 

senescence induced by Rb protein 

phosphorylation and oncogene, which 

ultimately leads to uncontrolled cell growth and 

proliferation and contributes to tumor invasion 

and metastasis. Recent studies have shown that 

CDKN2A/B homozygous deletion is associated 

with poorer overall survival in astrocytoma 

(Crespo I, Vital AL, Gonzalez-Tablas M, et al., 

2015; Reis GF, Pekmezci M, Hansen HM, et al., 

2015; Lu VM, O’Connor KP, Shah AH, et al., 

2020). The presence of homozygous deletion of 

CDKN2A/B in IDH-mutant low-grade 

astrocytoma results in biological behavior 

consistent with that of high-grade astrocytoma 

(Brat DJ, Aldape K, Colman H, et al., 2020). In 

addition, gliomas patients with homozygous 

deletion of CDKN2A/B have a worse prognosis 

than those without homozygous deletion (Li Z, 

Kaiser L, Holzgreve A, et al., 2021). Therefore, 

the 2021 WHO classification of CNS tumor 

highlights the importance of the homozygous 

deletion status of CDKN2A/B in IDH-mutant 

astrocytoma. 

DL and radiomics have been widely used in the 

prediction of glioma genes. We used CNN to 

predict the homozygous deletion status of 

CDKN2A/B, which showed superior 

performance to the clinical model alone, but not 

as good as the radiomics with manually 

extracted features. We presented a combination 

of clinical features, DL model and radiomics 

model, with AUC of 0.958 and 0.914 for the 
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training cohort and test cohort, respectively. In 

addition, instead of extracting the CNN features, 

the DL model we adopted used end-to-end 

input graphics and output results. Tasks that 

could be solved by multiple modules were 

modeled by a single model, which simplified the 

process and avoided the disadvantage of errors 

with the final target caused by inconsistent 

training objectives of multiple modules. We 

combined DL and radiomics, which is both 

convenient to obtain images, cost saving, no 

radiation dose, no additional damage to the 

patient’s body, and DL can also analyze the 

whole images well. In general, the study method 

we use contributes to an efficient and 

reproducible workflow, thereby improving its 

clinical applicability. 

Although DL and radiomics showed 

quantitative predictive performance, VASARI 

features were still valuable in predicting genes 

and are meaningful when added to the fusion 

model. Sun et al. (2022) and Cao et al. (2021) 

applied VASARI features to IDH and 1p/19q 

gene mutation, and the results showed that 

some of the VASARI features could have 

auxiliary predictive value for their models. The 

current study applied the VASIRI features to 

predict the homozygous deletion status of 

CDKN2A/B, which was not available in 

previous studies. The final results showed that 

the definition of enhancement margin and 

proportional necrosis had a p value <0.05 and 

were predictive of CDKN2A/B homozygous 

deletion status. Thus, it can be demonstrated 

that VASARI features have a positive role in 

predicting CDKN2A/B homozygous deletion 

status in IDH-mutant astrocytoma. 

Several limitations of the research remain to be 

explored further. First, the sample size is small 

and the performance of the DL model cannot be 

fully utilized, so a large sample size and 

prospective validation are needed. Second, our 

noninvasive model was built on CE-T1WI and 

T2-FLAIR conventional MRI sequences and 

showed good performance, but still need to 

consider functional MRI sequences such as 

diffusion-weighted imaging (DWI), 

perfusion-weighted imaging (PWI), and 

diffusion kurtosis imaging (DKI), which may 

further improve the prediction performance. 

Third, our images are manually segmented, 

which is time-consuming and error-prone, 

therefore, it is necessary to obtain ROIs by 

semi-automatic or automatic segmentation in 

the future research, which may further increase 

the precision of prediction. 

5. Conclusions 

In summary, we used DL combined with 

radiomics to non-invasively predict the 

homozygous deletion status of CDKN2A/B in 

IDH-mutant astrocytoma, improving 

classification accuracy and demonstrating better 

performance in the fusion model. 
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