

Current Research in Medical Sciences ISSN 2958-0390

www.pioneerpublisher.com/crms Volume 4 Number 4 September 2025

Prevalence and Clinical Management of Type 2 Diabetes Among Urban Slum Populations in Mumbai, India

Ajay V. Borkar¹

¹ Krishna Institute of Medical Sciences, Maharashtra, India Correspondence: Ajay V. Borkar, Krishna Institute of Medical Sciences, Maharashtra, India.

doi:10.56397/CRMS.2025.09.03

Abstract

This study investigates the prevalence, clinical management, and structural barriers associated with Type 2 Diabetes Mellitus (T2DM) among urban slum populations in Mumbai, India. Drawing on epidemiological estimates, field-level data, and policy analysis, it highlights the disproportionate burden of T2DM in informal settlements, where delayed diagnoses, limited access to diagnostics, and poor treatment adherence are widespread. The research examines patient care pathways across fragmented systems—public clinics, private providers, NGOs, and informal care networks—revealing significant gaps in service coordination and continuity. Socioeconomic constraints, medication affordability, nutrition insecurity, and over-reliance on informal pharmacies further hinder glycemic control. In response, the study evaluates community-based interventions, such as NGO-led foot clinics, mobile diabetes units, and ASHA worker outreach, while critiquing their limited integration into municipal policy frameworks. The paper concludes by proposing a multi-level, equity-centered diabetes care model grounded in primary care strengthening, digital health integration, and community empowerment. This model aims to reduce the chronic care divide for urban poor populations living at the margins of India's healthcare system.

Keywords: Type 2 Diabetes Mellitus, urban slums, Mumbai, non-communicable diseases, health inequity

1. Introduction

The health landscape of Mumbai, India's financial capital and one of the most densely populated urban centers in the world, is marked by an acute contradiction: while it houses world-class medical institutions and advanced private hospitals, it is also home to some of Asia's largest informal settlements. According to the *Mumbai Human Development Report* (2015), over 41% of the city's population resides in slum

areas, often with little to no access to consistent healthcare, clean water, or adequate sanitation. These structural disparities have made urban poor communities particularly vulnerable not only to infectious diseases, but increasingly to non-communicable diseases (NCDs), most notably Type 2 Diabetes Mellitus (T2DM).

The rise of T2DM in Mumbai's slums is closely tied to patterns of urban poverty, rapid dietary transition, and constrained living conditions.

Limited income opportunities often result in reliance on low-cost, high-carbohydrate, calorie-dense foods that are poor in nutritional value—contributing to obesity and metabolic disorders, key risk factors for diabetes. A study conducted by Yadav et al. (2017) in Dharavi, one of Asia's largest slums, found a prevalence rate of 12.8% for T2DM among adults over 30, a figure comparable to or exceeding that of the city's more affluent neighborhoods.

Furthermore, the lack of public recreational spaces, sedentary work in the informal economy (e.g., stitching, home-based packing work), and long commuting hours exacerbate physical inactivity among slum residents. Many adults are unaware of their metabolic health status due to low screening rates, leading to undiagnosed and untreated diabetes until complications emerge.

Compounding these challenges are systemic health inequities. Public health facilities are often overcrowded, understaffed, or located far from informal settlements. Private healthcare, though more accessible in some areas, remains prohibitively expensive for many slum households, resulting in delays in diagnosis and treatment. Preventive care, especially for chronic diseases, is rarely prioritized, as public health efforts tend to focus on infectious disease control and maternal-child health.

The emergence of NCDs like T2DM in urban slums reveals a profound shift in the disease burden affecting low-income populations. Once perceived primarily as "diseases of affluence," chronic conditions now disproportionately affect the urban poor, driven by a mix of environmental, behavioral, and systemic factors. In the case of Mumbai, addressing T2DM requires not just clinical interventions but a broader understanding of how urban health inequities shape who gets sick, who receives care, and who is left behind.

2. Diabetes Prevalence in Slum Communities: Scope, Screening, and Data Gaps

2.1 Recent Epidemiological Findings and Estimates of T2DM Prevalence

The prevalence of Type 2 Diabetes Mellitus (T2DM) in Mumbai's slum settlements has emerged as a pressing urban health challenge, with recent field studies revealing rates that rival or even exceed those in higher-income urban areas. For instance, a 2019 cross-sectional survey in slum areas such as Chembur, Govandi,

and Mankhurd identified an age-adjusted prevalence of 11.6% among adults aged 30–65. In Dharavi, one of the most densely populated slums in Asia, a 2020 NGO-led screening initiative found the prevalence to be as high as 12.8% in the same age group.

Perhaps more concerning is the proportion of undiagnosed cases. Across all study areas, more than 60% of individuals diagnosed with T2DM during screenings had no prior knowledge of their condition. This finding underscores a pervasive issue of silent disease progression due to low awareness, irregular health check-ups, and absence of systematic screening efforts.

Further analysis revealed gender-based differences, with higher prevalence among men (13.4%) compared to women (10.2%), a pattern attributed to differential labor demands, dietary exposure, and social health-seeking norms. Slum clusters with lower education levels or higher rates of nutritional insecurity, such as Govandi and Kurla East, reported the highest rates of unrecognized diabetes cases.

Despite these worrying indicators, there remains a lack of continuous surveillance infrastructure in slum zones. Most prevalence data stems from small-scale, NGO-sponsored or university-linked field projects with limited sample sizes and funding. These gaps make it difficult for municipal health authorities to assess the true burden of the disease, let alone develop a coordinated response.

This growing body of evidence illustrates a stark mismatch between the scale of the problem and the institutional mechanisms available to address it—leaving a significant portion of at-risk populations unmonitored and untreated until complications arise.

2.2 Challenges in Early Detection and Underdiagnosis

Early detection of Type 2 Diabetes Mellitus (T2DM) in Mumbai's slum communities is significantly hampered by a combination of systemic, cultural, and infrastructural barriers. Despite rising prevalence rates, consistent and widespread screening mechanisms remain largely absent, particularly in informal settlements where public health outreach is limited.

One of the foremost challenges lies in the invisibility of early-stage diabetes symptoms. Unlike acute illnesses that present immediate

discomfort, the early phases of T2DM may not trigger enough concern among individuals to seek medical attention. In resource-constrained slums, health is often deprioritized unless symptoms directly interfere with one's capacity to work. As a result, routine check-ups or preventive screenings are rare, especially for asymptomatic adults.

Awareness levels about chronic diseases also remain low. While national campaigns have raised general awareness of diabetes in urban India, the messaging often fails to reach informal settlements in ways that are linguistically or culturally accessible. Misconceptions about the disease—such as associating diabetes only with old age or affluence—contribute to a delayed recognition of risk. Community health workers (such as ASHAs) report that many individuals do not consider themselves "candidates" for diabetes testing unless they are already experiencing fatigue, frequent urination, or vision problems.

Structural access to diagnostic services presents another barrier. Although public hospitals and urban health centers offer subsidized or free testing, these facilities are often distant from slum clusters, require long wait times, and may have limited lab capacities. This drives many residents to seek help from local chemists or informal providers, who may lack proper diagnostic tools or clinical training. Moreover, the cost and inconvenience of travel, lost wages, and time away from work deter many low-income residents from undergoing testing unless absolutely necessary.

Finally, there is limited systematic outreach from municipal health authorities for non-communicable disease screening. Programs such as the National Programme for Prevention and Control of Cancer, Diabetes, Cardiovascular Diseases and Stroke (NPCDCS) have not been adequately scaled in slum zones, largely due to workforce shortages and competing priorities like maternal-child health and infectious disease control.

Together, these barriers contribute to a persistently high rate of undiagnosed diabetes in urban slums. Addressing them requires not only expanded service provision but a shift in how health systems engage with marginalized populations—through mobile screening units, integrated primary care, culturally responsive health education, and incentives for early

testing.

2.3 Limitations in Community Health Survey Infrastructure

Accurate and timely data collection is foundational to public health planning. However, Mumbai's slum communities remain underrepresented in epidemiological surveys, leading to serious underestimation of the Type 2 Diabetes Mellitus (T2DM) burden and limiting the capacity of health systems to respond effectively.

A key limitation lies in the infrequent and inconsistent coverage of slum populations in national surveys such as the National Family Health Survey (NFHS) or Sample Registration System (SRS). These large-scale instruments often rely on census blocks that do not include informal settlements, especially those that are unregistered or recently established. Consequently, the data generated from such surveys are often skewed toward urban populations, formal leaving slum communities statistically invisible.

In cases where targeted surveys are conducted, they often suffer from small sample sizes, fragmented datasets, and lack of longitudinal Non-governmental tracking. organizations (NGOs) and academic institutions may carry out independent screening programs, but these are typically localized, efforts lack standardization, and are rarely integrated into municipal or state-level health databases. As a result, valuable microdata on blood glucose levels, medication use, comorbidities, and care-seeking behavior remain siloed, underutilized, or unpublished.

Moreover, the lack of digitized and interoperable health records across the public and private sector contributes to poor continuity of care. A patient screened at an NGO camp may not have their data shared with the nearest public health post, making follow-up impossible. In addition, very few slum-dwelling patients possess formal medical documentation or personal health records, further limiting surveillance and case management.

Another major challenge is the shortage of trained field workers and data collectors who are linguistically and culturally equipped to engage with diverse slum populations. Inadequate investment in community-based enumerator training often results in errors in self-reported data, mistrust from participants, or

incomplete datasets. Language barriers, gender norms, and cultural stigma surrounding chronic illnesses can further reduce response rates and reliability.

The absence of granular, disaggregated data makes it difficult for policymakers to identify high-risk areas, prioritize interventions, or monitor program outcomes. It also hinders academic researchers from conducting robust analyses on urban health inequalities. Ultimately, without a coordinated and inclusive health survey infrastructure, slum populations will continue to be left behind in the fight against diabetes.

3. Patient Pathways and Clinical Diagnosis in Resource-Constrained Settings

3.1 How Residents Access Diagnosis: Public Clinics, Private Providers, NGOs

In Mumbai's urban slums, access to diabetes diagnosis unfolds along fragmented and often informal pathways. Residents rarely follow a linear or standardized route to clinical care; instead, their decisions are shaped by affordability, convenience, perceived quality, and trust.

Public clinics serve as the official entry point into the health system for many low-income residents. Urban Health Posts (UHPs), Municipal Dispensaries, and General Hospitals operated by the Municipal Corporation of Greater Mumbai (MCGM) are technically responsible for providing subsidized or free diabetes screening services. However, these facilities are frequently overburdened and under-resourced. Long wait times, understaffing, and limited laboratory availability diminish their utility, particularly for working adults who cannot afford to spend hours in queues or make multiple visits. Moreover, many slum residents are unaware of the availability of free diagnostic services or believe these services are only for acute conditions.

Private providers, ranging from neighborhood general practitioners to informal "compounders" (non-licensed dispensers), are often the first point of contact. They are trusted within the community, accessible after working hours, and known for quick consultations. However, diabetes diagnosis in these settings tends to be inconsistent. Many providers rely solely on random blood sugar tests using handheld glucometers, without confirmatory fasting tests or HbA1c measurements. In some

cases, providers may begin treatment based on symptoms or single readings without formal lab confirmation, leading to both under- and over-diagnosis. Furthermore, the cost of repeat testing, especially when outsourced to private laboratories, is a major barrier to diagnostic continuity.

Non-governmental organizations (NGOs) and community-based initiatives fill critical gaps, particularly in high-density or underserved zones. Mobile medical vans, temporary health camps, and NGO-run clinics offer periodic screenings, often supported by international health foundations or CSR-funded projects. These interventions are vital for reaching the unregistered or transient populations within slums. For example, organizations such as Apnalaya and the Foundation for Medical Research have led community screening campaigns with free glucose testing and follow-up counseling. However, such efforts are limited by funding cycles, spatial reach, and the inability to offer sustained follow-up care.

Finally, self-diagnosis and pharmacy-based screening are becoming increasingly common. Residents may walk into local chemists for a glucometer check or purchase over-the-counter medications based on informal assessments. This behavior is especially prevalent among younger or middle-aged adults who suspect they are at risk but wish to avoid the bureaucracy of formal health institutions.

These diverse and often fragmented diagnostic routes reflect both the adaptability and vulnerability of slum residents navigating a system that lacks integration, affordability, and consistent quality assurance. As a result, many individuals remain undiagnosed until they present with serious complications, delaying both treatment initiation and lifestyle interventions that could prevent disease progression.

3.2 Delayed Diagnosis and Presentation with Complications

In Mumbai's slum communities, delayed diagnosis of Type 2 Diabetes Mellitus (T2DM) is not an exception but a common reality—one that significantly heightens the risk of irreversible complications by the time medical attention is finally sought. The average time between symptom onset and formal diagnosis often spans several months to years, reflecting systemic, cultural, and financial obstacles that

inhibit early detection.

One of the most pervasive reasons for delay is the gradual and non-acute nature of early diabetic symptoms. Individuals experiencing fatigue, mild polyuria, blurred vision, or unintended weight loss may dismiss these signs as stress, aging, or effects of poor diet rather than indicators of a chronic illness. In environments where daily survival takes precedence over preventive care, these symptoms are rarely seen as urgent.

Moreover, competing economic pressures discourage early care-seeking. In many cases, slum residents work in informal sectors—such as domestic labor, vending, or construction—without paid sick leave or job security. Taking time off to visit a health facility, wait in queues, and pay for tests can mean lost wages or even job loss. As a result, people often delay medical visits until symptoms become severe enough to interfere with daily function.

The consequences of delayed diagnosis are clinically significant. By the time many patients present at public hospitals or NGO-run clinics, they are already experiencing advanced diabetic complications, such as non-healing foot ulcers, peripheral neuropathy, vision deterioration (diabetic retinopathy), or early signs of kidney impairment. A 2021 observational study at LTMG Hospital in Sion found that nearly 35% of first-time diabetes patients from nearby slum areas exhibited one or more microvascular complications at diagnosis, suggesting a long period of undetected hyperglycemia.

Delayed diagnosis is also compounded by the lack of referral linkages between the community and higher-level care. In the absence of primary care continuity or structured follow-up systems, patients tend to "float" between different service providers—visiting a chemist one month, a public hospital the next, and a traditional healer thereafter—without receiving consistent monitoring or long-term glycemic control strategies.

This fragmentation not only increases the disease burden but also drives up public health costs due to the need for tertiary care, hospitalizations, and long-term management of preventable complications. It also narrows the window for lifestyle-based interventions and reinforces a treatment-over-prevention model of care that is neither sustainable nor equitable.

Addressing delayed diagnosis requires both

system-level reforms and community-level engagement: expanding the presence of mobile screening teams, establishing walk-in community health desks for high-risk adults, subsidizing essential diagnostic tests, and embedding diabetes screening into broader primary care outreach in slum areas.

3.3 Gaps in Diagnostic Tools and Lab Access

One of the most persistent barriers to effective diabetes diagnosis in Mumbai's slum areas is the lack of accessible, affordable, and reliable diagnostic infrastructure. Even when individuals seek help, the health system they enter is frequently ill-equipped to confirm and manage chronic conditions like Type 2 Diabetes Mellitus (T2DM) in a timely and accurate manner.

At the primary care level, public clinics often essential laboratory services confirmatory testing. While handheld glucometers are widely used to conduct random blood sugar (RBS) tests, these devices are typically limited to point-of-care assessments and do not provide the comprehensive diagnostic picture needed to confirm a T2DM diagnosis. Fasting blood sugar (FBS), post-prandial sugar (PPBS), and HbA1c tests-which are globally recommended for accurate diabetes diagnosis monitoring—are rarely available on-site at local municipal dispensaries or Urban Health Posts.

When these tests are available, turnaround times are slow and laboratory logistics are unreliable. In many facilities, blood samples must be transported to centralized labs, and patients are required to return on later dates to receive results—an impractical expectation for those living hand-to-mouth, who may not have the flexibility to make repeat visits. Delays in lab reporting frequently lead to loss to follow-up, with patients abandoning the diagnostic process altogether.

In the private sector, while diagnostic tools are more widely available, they are often cost-prohibitive for slum residents. HbA1c tests in private labs typically cost between ₹400–₹600 (\$5–\$7 USD), which can amount to a week's earnings for low-income families. As a result, even those who begin the diagnostic process may opt for incomplete testing or delay decisions based on affordability. This is especially problematic given the asymptomatic nature of early diabetes, where patients need

more motivation and fewer barriers to complete diagnosis.

Another serious concern is the quality and calibration of diagnostic devices in informal settings. Chemists and unregulated private clinics may use outdated or poorly maintained glucometers, leading to false negatives or false positives. Without standardized equipment and staff training, patients may be wrongly reassured or prematurely alarmed, both of which can compromise clinical outcomes.

Finally, there is a lack of interoperability between diagnostic centers and treatment facilities. Even when patients get accurate tests done, the absence of a centralized health information system means their data are not shared across providers. This siloing of results hampers coordinated care and continuity, especially for patients with fluctuating blood sugar levels or multiple co-morbidities.

To bridge these diagnostic gaps, there is a pressing need for:

- Decentralized lab services in slum clinics,
- Public-private partnerships to subsidize testing,
- Mobile diagnostic units for outreach screening, and
- Integration of electronic health records that track and follow patient testing over time.

Without such improvements, diabetes will continue to be diagnosed late and managed poorly, leading to preventable suffering and avoidable costs in already overburdened urban health systems.

4. Treatment Adherence and Barriers to Long-Term Glycemic Control

4.1 Medication Compliance, Affordability, and Out-of-Pocket Burden

Medication adherence among individuals diagnosed with Type 2 Diabetes Mellitus (T2DM) in Mumbai's slum communities is deeply constrained by financial, systemic, barriers. While informational initiating pharmacological treatment may be feasible for many patients at the time of diagnosis, sustaining regular, long-term glycemic control is far more difficult due to structural poverty and gaps in medication access.

One of the central issues is affordability. Oral

hypoglycemic agents (OHAs) and insulin, though available in India at relatively low retail prices compared to high-income countries, still represent a significant cost burden for low-income households. A 2021 study by the Indian Journal of Endocrinology and Metabolism estimated that the monthly cost of basic diabetes medications ranges from ₹300-₹800 (\$4-\$10 USD) per person, not including costs for syringes, glucose test strips, or regular medical consultations. For families living on daily wages of ₹200-₹400, these expenses are often unsustainable.

Although India's public health system officially provides essential medicines free of charge at government pharmacies, stock-outs and limited formularies are common in municipal health posts and hospitals. Patients frequently report being prescribed medications that are not in stock and are directed to purchase them from private pharmacies. This reliance on the private retail sector increases out-of-pocket expenditure, especially in the absence of insurance coverage or reimbursement schemes for outpatient chronic disease care.

Compliance is further undermined interruptions in drug availability and a lack of proper follow-up counseling. Many patients discontinue treatment after a few weeks when symptoms subside or when they run out of medicines. Others modify dosages on their own or switch brands based on advice from chemists or neighbors, unaware of the consequences of inconsistent glycemic control. In some cases, patients turn to traditional remedies or homeopathy, either due to cultural beliefs or perceived side effects allopathic from medications.

The informal nature of healthcare delivery in slum areas also contributes to nonadherence. Patients often receive prescriptions without adequate explanation or ongoing monitoring, particularly when drugs are dispensed through camps, temporary clinics, or private unlicensed providers. Without a clear understanding of the chronic nature of diabetes, the importance of continuous medication use is lost, especially when patients feel physically well.

Gender dynamics also play a role: in many households, women with diabetes may prioritize spending on their children or spouses' health over their own medications, leading to silent discontinuation of treatment among female patients.

In sum, the cumulative burden of medication costs, stock inconsistencies, poor patient education, and systemic fragmentation results in high rates of nonadherence and poor glycemic outcomes. For interventions to succeed, they must address both economic access and behavioral reinforcement—through subsidized drug schemes, community-based refill programs, and diabetes literacy campaigns that empower patients to remain consistent with treatment.

4.2 Nutrition Insecurity and Challenges in Dietary Management

Effective diabetes management hinges not only on pharmacological compliance but also on sustained dietary control. However, for residents of Mumbai's informal settlements, dietary management is significantly impeded by nutrition insecurity, inconsistent food access, and a food environment dominated by low-cost, high-carbohydrate staples.

A central challenge is economic access to diabetes-friendly foods. Standard dietary guidelines for Type 2 Diabetes Mellitus (T2DM) recommend whole grains, lean proteins, vegetables, legumes, and fruits—foods that are comparatively more expensive and less available in slum economies. Many families rely on the Public Distribution System (PDS) for subsidized food grains, which primarily include white rice, wheat flour, and sugar. These high-glycemic staples, while affordable, exacerbate glycemic variability and undermine dietary targets.

Moreover, food quantity often takes precedence over quality in resource-poor households. In families with multiple members and limited income, caloric sufficiency is prioritized over nutritional balance. This creates a structural paradox: patients are aware they must "eat right," but are forced by economic necessity to eat what is available and cheap, even if it's medically inadvisable. A 2022 qualitative study conducted in Dharavi found that over 65% of diabetic respondents reported skipping meals or eating insufficient vegetables due to affordability.

In addition to cost, local food environments are saturated with street foods and processed snacks—fried items, sugar-sweetened beverages, and refined flour-based products. These foods are cheap, ubiquitous, and often culturally preferred, especially among working adults and adolescents. While patients may understand that

these foods worsen their condition, behavioral change is difficult without structural support or alternatives. Lack of refrigeration, cooking fuel, or clean water also constrains healthy meal preparation, particularly for patients living alone or in crowded tenements.

There is also a notable absence of personalized dietary counseling within the public health system. Dieticians are rarely present at primary care centers, and diabetes patients seldom receive specific, culturally relevant nutrition advice. When counseling is given, it is often generic and not adapted to local diets or economic realities, making compliance practically infeasible.

Gender and caregiving dynamics further complicate the picture. In many households, women with diabetes must cook the same food for the entire family, making it difficult to adhere to individualized dietary plans. In some cases, men control household food purchases, limiting women's agency over what they consume, even when they are managing a chronic illness.

To address these challenges, interventions must go beyond education. Solutions such as diabetes-sensitive food subsidies, community cooking demonstrations, affordable meal planning, and partnerships with local vendors to promote low-GI foods can help align dietary advice with on-the-ground realities. Without tackling food insecurity at its root, dietary noncompliance will remain a predictable outcome of poverty rather than a personal failure.

4.3 Role of Informal Care Providers and Pharmacies

In the dense urban slums of Mumbai, informal care providers and local pharmacies play a prominent—yet often overlooked—role in the landscape of diabetes care. While these actors frequently serve as first-line and continuing sources of treatment for patients with Type 2 Diabetes Mellitus (T2DM), their influence on treatment adherence is complex, offering both supportive access and significant clinical risks.

For many residents, licensed pharmacies and chemist shops serve as the most accessible source of diabetes medications. With long operating hours, minimal wait times, and no requirement for formal appointments, these vendors offer a convenience that public hospitals cannot match. In areas where government clinics suffer from chronic medicine

stock-outs or long queues, patients often turn to neighborhood chemists to refill prescriptions or seek advice when symptoms worsen.

Pharmacies also reduce the friction of health-seeking behavior by eliminating bureaucratic barriers and enabling medication purchases on a per-tablet basis. For low-income patients managing weekly expenses, this flexibility makes it possible to maintain partial adherence rather than go entirely without medication due to high upfront costs.

However, this convenience comes at a cost. Many chemists in informal areas dispense medications without prescriptions or formal diagnostic evidence, based solely on patient-reported symptoms or prior use. Some even recommend dosages or medication changes without adequate medical oversight. The result is a system where clinical inertia (lack of appropriate treatment adjustment) and therapeutic inconsistency are rampant.

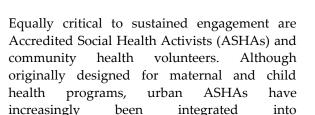
Moreover, unlicensed or semi-qualified informal practitioners—often known locally as "compounders" or "Bengali doctors"—serve as de facto healthcare providers, especially in underserved settlements. While they are trusted figures within communities, their understanding of chronic disease management is typically poor. These providers may initiate treatment without confirming diagnosis, fail to advise on lifestyle modification, and rarely conduct or recommend follow-up testing. Patients treated by such individuals are often unaware of the progressive nature of diabetes, leading to poor long-term adherence.

Even when patients begin treatment under formal providers, they may default to informal sources for refills or side-effect concerns due to greater interpersonal familiarity and lack of stigma. Unlike overburdened public clinics, informal providers may offer more personalized attention, reinforcing patient loyalty despite suboptimal clinical quality.

Efforts to improve adherence must therefore engage with—not bypass—these informal actors. Strategies such as chemist training programs, mobile app-based prescription validation, and incentive schemes for correct drug dispensation can improve their integration into the health system. Additionally, community-level education should include guidance distinguishing between legitimate and potentially harmful providers, without

alienating the informal sector that currently fills a major accessibility gap.

Ultimately, strengthening diabetes care in slum communities requires acknowledging the hybrid nature of health systems and leveraging the ubiquity of informal providers and pharmacies while mitigating the risks they pose.


5. Community-Based Interventions and Policy Integration

5.1 NGO-led Foot Clinics, Mobile Diabetes Units, and ASHA Worker Outreach

In the context of India's expanding burden of Type 2 Diabetes Mellitus (T2DM), especially in under-resourced urban slum populations, community-based interventions have become the functional backbone of early detection and continuity of care. These grassroots models, though fragmented, provide crucial entry points for underserved patients to receive diagnosis, treatment, and follow-up—often in ways the formal healthcare system cannot replicate.

NGO-led foot clinics serve as one of the most visible and targeted interventions addressing complications of diabetes. Diabetic foot ulcers, a major cause of preventable lower limb amputations, are common among patients with poor glycemic control and limited footwear access. In areas such as Dharavi and Govandi, NGOs like Apnalaya and the Diabetic Foot Society of India have operated temporary or mobile foot care centers, offering free screening for neuropathy, minor wound care, offloading footwear, and patient education. These services have reportedly reduced local hospitalization rates for advanced diabetic complications, despite being operated only a few days per week due to resource constraints.

Meanwhile, mobile diabetes units—typically van-based services equipped with glucometers, blood pressure monitors, and occasionally HbA1c testing kits—travel directly into slum areas to offer on-the-spot screening, referral, and short-term follow-up. Funded either by NGOs or municipal health departments, these services help bridge the accessibility gap for residents who cannot afford to miss work or travel long distances for clinical testing. Data from the Mumbai Municipal Corporation in 2022 indicated that mobile units screened over 18,000 individuals in slums across five zones, identifying nearly 2,300 new diabetes cases within a six-month span.

non-communicable disease management in high-burden slum areas. Their role includes

door-to-door awareness campaigns, informal counseling, follow-up reminders, and patient

tracking for repeat medication pickups or lab visits. Unlike institutional actors, ASHAs have intimate familiarity with the community's socio-cultural dynamics, making them essential conduits of trust in diabetes education and behavioral change.

However, while these interventions demonstrate local effectiveness, their scale and sustainability remain fragile. Most rely on short-term donor funding or special urban health mission grants, and they lack formal integration with municipal electronic health records or insurance-linked reimbursement systems. Moreover, coordination between NGOs, ASHAs, and public clinics is often ad hoc, with minimal data sharing or cross-training.

To achieve lasting results, Mumbai's public health system must move from supporting isolated pilots to establishing system-level partnerships that embed community-based models into routine care frameworks. This includes formal training modules for ASHAs in diabetes education, shared referral pathways between mobile units and clinics, and outcome-linked funding mechanisms for NGO-operated services.

5.2 Inclusion of Slum-Focused Diabetes Care in Municipal Health Policy

Despite the growing evidence of disproportionate Type 2 Diabetes Mellitus (T2DM) burden in Mumbai's slum communities, municipal health policy has historically emphasized communicable disease control, maternal child and health, and sanitation—leaving chronic non-communicable (NCDs) under-prioritized. diseases structural omission has contributed to a fragmented diabetes response that relies heavily on NGOs and informal networks. However, recent shifts in urban health discourse suggest emerging recognition of the need institutionalize slum-focused diabetes within the city's formal policy framework.

A 2021 policy assessment conducted by the Municipal Corporation of Greater Mumbai (MCGM) revealed that while NCDs have been incorporated into the City Health Action Plan, specific strategies tailored to vulnerable populations such as slum residents remain limited. Existing NCD clinics attached to urban primary health centers (UPHCs) are often overwhelmed, under-resourced, and poorly staffed for managing chronic care continuity. Moreover, they frequently lack outreach capabilities to engage populations beyond the clinic's physical perimeter.

Policy gaps also persist in health information systems. Slum-based mobile diabetes screenings—carried out by NGOs, private actors, or ASHAs—often collect valuable patient-level data, but these are not systematically integrated into municipal electronic health records. As a result, policymakers operate without a complete picture of diabetes prevalence, treatment dropouts, or intervention outcomes within informal settlements.

Some progress has been made through pilot integration initiatives. In 2022, MCGM initiated a project in Ward L (covering parts of Kurla and Chembur) to embed diabetes follow-up protocols into maternal and child health outreach platforms. This allowed ASHA workers and auxiliary nurse midwives (ANMs) to deliver basic glucose monitoring, dietary counseling, and medication refill reminders during routine family health visits. Preliminary evaluations showed improved retention in diabetes care pathways over a six-month period.

Nevertheless, the expansion of such models faces funding and policy inertia. At the national level, India's NPCDCS (National Programme for Prevention and Control of Cancer, Diabetes, Cardiovascular Diseases and Stroke) does provide a policy umbrella, but local implementation remains weak in urban informal contexts. There are no dedicated budget lines or staffing allocations for slum-specific NCD care in most municipal wards.

To institutionalize slum-focused diabetes care, municipal policy must:

- Allocate designated funds for chronic disease management in urban vulnerable zones;
- Expand ASHA roles with clear job descriptions for NCD care and ensure consistent training;

- Mandate integration of community-screened patient data into centralized health information platforms;
- Develop interoperable digital records that follow patients across NGO, public, and private systems;
- Establish public-private partnerships to co-manage services such as mobile clinics and local diabetes counseling centers.

The shift from reactive, episodic diabetes care to proactive, integrated chronic disease management will only be possible if slum residents are recognized not as peripheral beneficiaries but as a core constituency of urban public health policy.

6. Toward an Integrated and Equitable Diabetes Care Model for Urban Poor

Addressing the rising tide of Type 2 Diabetes Mellitus (T2DM) in Mumbai's urban slums demands more than fragmented interventions-it requires a shift toward a comprehensive, equity-oriented care model that recognizes the lived realities of poverty, precarity, and informal access to health services. The current landscape, characterized by siloed NGO programs, overburdened public clinics, and informal medication channels, fails to ensure continuity, affordability, or accountability.

A truly integrated care model for the urban poor must rest on several key pillars:

- Primary care strengthening with NCD integration: Every Urban Primary Health Centre (UPHC) must serve not only as a point of care but also as a coordination hub for community-based screening, lab referrals, medication refills, and structured follow-up. This requires staffing with trained NCD nurses, digital record systems, and logistics for consistent drug supply.
- Task-shifting and community workforce mobilization: **Empowering** workers, local volunteers, and frontline paramedics with training, incentives, and clear protocols for diabetes care can dramatically expand reach. These actors should be equipped to conduct door-to-door monitoring, reinforce support lifestyle adherence, and

changes.

- Digital infrastructure and data patient integration: Slum-specific data-from mobile vans, NGO programs, and pharmacies-must be consolidated into municipal health databases. Digital health IDs. SMS-based reminders, and interoperable records are essential for tracking glycemic control and identifying dropouts.
- Affordable medication and dietary support: Policy innovations such as urban ration cards for diabetes-friendly food baskets, capped insulin prices, and community kitchens with diabetic meal options can reduce economic barriers to control. Micro-insurance schemes and subsidized diagnostics should be made slum-inclusive.
- Health literacy and behavioral change: Culturally tailored education campaigns—delivered in local languages through radio, mobile media, and street theatre—can normalize help-seeking, reduce stigma, and promote early screening. Peer support groups can also reinforce motivation and accountability.
- Public-private coordination platforms: Municipal health departments should act as conveners of all actors involved in slum health—NGOs, clinics, chemists, data scientists—under a shared performance framework. Outcome-based contracts and blended funding models can ensure both accountability and flexibility.

Most critically, any equitable care model must center the agency of patients—not just as passive recipients of care, but as partners in program design, feedback, and implementation. Solutions should emerge not only from policy rooms but also from focus groups, patient councils, and local leadership structures within slums.

If Mumbai and similar megacities are to prevent a generational diabetes crisis among their most vulnerable populations, they must build systems that are closer, cheaper, simpler—and more humane. Only through systemic equity and community-rooted design can the double burden of poverty and diabetes be broken.

References

- Dyavarishetty, P., & Kowli, S. (2016). Population-based screening for diabetes: Experience in Mumbai slums, Maharashtra, India. *SVV Research Reports*.
- Gujrathi, A., & Dhakne, S. (2014). Effect of 'Community based Diabetic patient education' on glycaemic status, lifestyle and self-care practices among type 2 diabetes patients in an urban slum of Mumbai. SSRN Working Paper Series.
- Kotian, S. P., & Waingankar, P. (2019). Assessment of compliance to treatment of hypertension and diabetes among previously diagnosed patients in urban slums of Belapur, Navi Mumbai, India. *Indian Journal of Public Health*, 63(4), 270–276.
- Naydenova, E., Raghu, A., & Ernst, J. (2018). Healthcare choices in Mumbai slums: A cross-sectional study. *Wellcome Open Research*, 2, 14239.
- Patil, R. S., & Gothankar, J. S. (2013). Prevalence of type-2 diabetes mellitus and associated risk factors in an urban slum of Pune City, India. *International Journal of Basic and Applied Medical Sciences*, 3(4), 346–349.
- Patil, R. S., & Gothankar, J. S. (2016). Assessment of risk of type 2 diabetes using the Indian Diabetes Risk Score in an urban slum of Pune, Maharashtra, India: A cross-sectional study. World Journal of Epidemiology and Public Health, 5(1).
- Qureshi, K. F., Karnedy, M., & Pawar, A. (2025). Prevalence of type 2 diabetes mellitus and its associated risk factors in an urban slum of a metropolitan city. *Preventive Medicine Reports*, 30, 101027.
- Sunita, M., Singh, A. K., Rogye, A., & Sonawane, M. (2017). Prevalence of diabetic retinopathy in urban slums: The Aditya Jyot diabetic retinopathy in urban Mumbai slums study—Report 2. *Asia Pacific Journal of Public Health*, 29(2), 93–100.
- Uthman, O. A., Ayorinde, A., Oyebode, O., Sartori, J., & Gill, P. (2022). Global prevalence and trends in hypertension and type 2 diabetes mellitus among slum residents: A systematic review and meta-analysis. *BMJ Open*, 12(2), e052393.
- Vishwanath, G. R., & Sangrulkar, T. V. (2018). An

epidemiological study of type-2 diabetes mellitus in an adopted urban slum area. *International Journal of Community Medicine* and Public Health, 5(10), 1–8.