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Abstract 

Machine learning (ML) and deep learning (DL), as pivotal components of artificial intelligence (AI), 

are revolutionizing precision medicine through their robust learning capabilities and image 

recognition functions. These technologies have significantly impacted disease diagnosis, therapeutic 

evaluation, prognosis prediction, and survival analysis. This review synthesizes recent advances in 

ML and DL applications for intracranial/extracranial atherosclerotic plaques and white matter 

hyperintensities (WMH), while critically analyzing current challenges and future directions. 
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1. Introduction 

Intracranial/extracranial atherosclerotic plaques 

and white matter hyperintensities (WMH) are 

critical imaging biomarkers of cerebrovascular 

diseases. Accurate assessment of these markers 

is essential for diagnosis, treatment planning, 

and prognosis prediction. While high-resolution 

magnetic resonance vessel wall imaging 

(HR-MR VWI) enables detailed plaque 

characterization and lumen-wall visualization, 

traditional manual interpretation suffers from 

subjectivity and inefficiency. Recent 

advancements in AI, particularly ML and DL, 

offer automated solutions for plaque and WMH 

analysis through superior image recognition and 

high-dimensional feature extraction. However, 

existing studies often focus on isolated tasks, 

lacking systematic integration. This review 

comprehensively evaluates ML and DL 

applications in atherosclerotic plaques and 

WMH research, identifies current limitations, 

and outlines future directions. 

2. Overview of Machine Learning and Deep 

Learning 

The medical field is undergoing a 

transformative shift in diagnostic and 

therapeutic paradigms driven by artificial 
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intelligence (AI), with particularly remarkable 

advancements in automated image analysis and 

pathological feature identification. Based on 

differences in modeling principles, machine 

learning (ML) can be categorized into three 

paradigms: supervised learning, unsupervised 

learning, and reinforcement learning (Srinivas & 

Young, 2023). The foundational theory of ML 

involves data-driven optimization of model 

parameters to minimize errors between 

predicted outputs and ground-truth results 

(Chen et al., 2017; Yan & Wang, 2022). 

Supervised learning, the most mature paradigm 

in clinical diagnostics, has significantly 

improved the precision of tumor staging 

assessments and the efficacy of non-invasive 

detection. Unsupervised learning (Matteucci et 

al., 2024), which utilizes unlabeled data to 

construct analytical models, exhibits unique 

advantages in disease subtype clustering and 

association rule mining, though it faces 

limitations in predictive stability. Reinforcement 

learning (Xuan et al., 2022) employs dynamic 

decision-making mechanisms, using delayed 

feedback to optimize agent strategies, with its 

core principle lying in balancing the exploration 

of new pathways and the exploitation of existing 

knowledge. 

As a pivotal advancement in ML, deep learning 

(DL) simulates human cognitive mechanisms 

through biomimetic neural network 

architectures. By leveraging backpropagation 

algorithms, DL achieves hierarchical feature 

abstraction and demonstrates exceptional 

performance in medical pattern recognition 

tasks (Lin, 2023; Thompson et al., 2020; Wagner 

et al., 2021). Among DL architectures, 

convolutional neural networks (CNNs) have 

achieved breakthroughs in medical image 

classification and lesion segmentation (Li et al., 

2022; McBee et al., 2018; Wang et al., 2023). 

Radiomics technology further enhances 

diagnostic objectivity by integrating quantitative 

feature analysis with ML algorithms. This 

approach automates the extraction of 

multidimensional parameters from regions of 

interest and constructs auxiliary diagnostic 

systems through statistical modeling, thereby 

significantly improving disease classification 

and severity assessment (Hatt et al., 2019; 

Lambin et al., 2012; Mayerhoefer et al., 2020). 

Recent advances (Y.-F. Chen et al., 2023) 

highlight that hybrid models combining DL and 

radiomics enable precise automated 

identification and quantitative analysis of 

carotid plaques, offering innovative solutions for 

vascular pathology evaluation. 

Notably, DL is evolving toward large-scale 

models supported by massive datasets and 

computational power. The Transformer 

architecture overcomes limitations in sequence 

modeling through attention mechanisms, 

diffusion generative models are emerging in 

medical image synthesis, and pretrained models 

such as GPT and BERT have pioneered new 

pathways for cross-modal medical data analysis. 

These technological breakthroughs continue to 

drive the profound integration of AI into 

healthcare applications. 

3. Applications of Machine Learning and Deep 

Learning in Intracranial/Extracranial 

Atherosclerosis 

3.1 Plaque Segmentation and Feature Assessment 

Current imaging modalities for detecting 

intracranial and extracranial atherosclerotic 

plaques include ultrasonography, computed 

tomography angiography (CTA), and 

high-resolution magnetic resonance vessel wall 

imaging (HR-MR VWI). Although 

ultrasonography demonstrates high sensitivity 

in identifying carotid plaques and detecting 

hemodynamic alterations, its utility in 

intracranial artery evaluation remains limited 

due to acoustic shadowing from the skull, 

insufficient penetration depth for assessing deep 

vessels, and challenges in collateral circulation 

evaluation. CTA effectively evaluates lumen 

stenosis and calcified components but lacks 

precision in characterizing small calcified or 

non-calcified plaques, with further limitations in 

assessing plaque composition and vulnerability. 

In contrast, HR-MR VWI, with its superior 

spatial resolution, provides unique advantages 

for morphological measurements of 

intracranial/extracranial arterial walls and 

quantitative analysis of plaque composition 

(Saba et al., 2018). However, traditional manual 

interpretation exhibits significant limitations: 

Operators require specialized expertise in 

atherosclerotic pathology and extensive clinical 

experience, results are susceptible to 

inter-operator variability in expertise and 

subjective interpretation, manual delineation 

suffers from high inter-observer variability and 

time inefficiency. Recent advancements in 

artificial intelligence (AI), particularly machine 

learning (ML) and deep learning (DL), offer 
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novel solutions for plaque analysis. These 

technologies leverage existing data to extract 

high-dimensional features, construct diagnostic 

and predictive models, and significantly 

enhance the accuracy and efficiency of plaque 

evaluation and cerebrovascular event prediction. 

DL-based automated analysis systems 

standardize image segmentation workflows 

through feature learning from large-scale 

annotated datasets, markedly improving 

processing efficiency and result consistency. 

Current research on HR-MR VWI image analysis 

focuses on algorithmic architecture innovation 

and multi-model synergy. For instance: Wan et 

al. (Wan et al., 2022) developed a 3D 

convolutional network system that achieves 

automatic vascular centerline tracking, 

geometric correction, and wall morphology 

parameter measurement, with segmentation 

accuracy exceeding 0.9 for 

intracranial/extracranial arteries. Shi et al. (F. Shi 

et al., 2019) pioneered the application of U-Net 

architecture for whole-brain HR-MR VWI 

segmentation, achieving Dice similarity 

coefficients of 0.89 (wall) and 0.77 (lumen). Their 

model successfully identified statistically 

significant differences in normalized plaque 

indices between symptomatic and asymptomatic 

groups across 24 severe stenosis cases. Wu et al. 

(Wu et al., 2019, 2024) proposed the DeepMAD 

multi-task framework, which excels in carotid 

plaque segmentation and pathological 

assessment, with performance further enhanced 

through joint optimization strategies. 

3.2 Radiomics-Driven Quantitative Plaque 

Assessment 

Radiomics-based quantitative plaque evaluation 

introduces a new dimension for risk 

stratification in ischemic cerebrovascular 

diseases. Pathological studies of acute ischemic 

stroke (AIS) reveal that atherosclerotic plaque 

morphology and composition are more effective 

predictors of cerebrovascular events than lumen 

stenosis severity (Prabhakaran et al., 2021; Tian 

et al., 2023). Current research paradigms employ 

ML algorithms to construct high-dimensional 

feature analysis models, enabling intelligent 

assessment of plaque heterogeneity. 

Quantitative analysis of anterior circulation 

plaques demonstrates that symptomatic cases 

exhibit significantly higher signal intensity 

distributions in histogram parameters compared 

to asymptomatic controls (Yu et al., 2019), a 

pattern also validated in posterior circulation 

plaque evaluation (Z. Shi et al., 2018). Shi et al. 

(Z. Shi et al., 2020) further demonstrated that 

histogram feature dispersion serves as a robust 

biomarker for discriminating culprit plaques, 

underscoring the superiority of quantitative 

imaging features in characterizing plaque 

heterogeneity. Notably, integrated models 

combining HR-MR VWI multimodal data with 

random forest algorithms have demonstrated 

diagnostic efficacy surpassing traditional 

methods in vulnerable plaque identification (Z. 

Shi et al., 2018). For culprit plaque 

discrimination, Zhang et al. (Zhang Guiling et 

al., 2023) optimized classification performance 

using extreme gradient boosting in a 

multi-sequence fusion model, providing 

technical support for precision diagnostics. 

3.3 Cerebrovascular Events 

Current research on the association between 

atherosclerosis and acute ischemic stroke (AIS) 

focuses on three dimensions: elucidation of 

pathogenic mechanisms, event risk prediction, 

and recurrence warning. The prevailing research 

paradigm involves integrating quantitative 

features from high-resolution vessel wall 

imaging (HR-VWI) with conventional imaging 

parameters to construct machine learning 

(ML)-based predictive frameworks. For instance: 

Li et al. (Li et al., 2023) developed an ensemble 

learning model that demonstrated superior 

performance in discriminating stroke 

mechanisms, achieving a 32% improvement in 

predictive accuracy compared to traditional 

models. Wang et al. (Wang et al., 2023) 

employed survival analysis to build a recurrence 

risk assessment system, identifying high-order 

texture features (e.g., gray-level co-occurrence 

matrix parameters) as optimal predictors of 

prognosis. Recent evidence (Tang et al., 2022) 

indicates that combining radiomic features with 

nomogram tools enhances stroke recurrence 

warning sensitivity to 92%, providing 

quantitative guidance for personalized 

treatment. The integration of deep learning (DL) 

and radiomics has established novel pathways 

for cerebrovascular event risk assessment. For 

example: Chen et al. (Y.-F. Chen et al., 2023) 

developed an intelligent diagnostic system using 

an object detection network to automate plaque 

component analysis, achieving 94.81% accuracy 

in AIS risk stratification. In image preprocessing, 

a transfer learning-based DL model achieved 

precise vascular wall segmentation (Song et al., 

2023). This method, when combined with a 
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support vector machine (SVM)-based 

multimodal diagnostic system, demonstrated 

exceptional performance in tumor grading, 

suggesting its potential applicability in 

cerebrovascular diseases. 

Notably, AIS pathogenesis involves 

multidimensional factors, including plaque 

stability, hemodynamic alterations, and 

molecular biological regulation (Ajoolabady et 

al., 2021; AlRuwaili et al., 2024; Arul et al., 2023; 

Biose et al., 2023). Models relying solely on 

imaging features risk systemic bias due to 

incomplete representation of these complex 

interactions. Emerging proteomics studies 

(Theofilatos et al., 2023) have confirmed that 

multi-omics data integration models improve 

predictive performance by 19.7% compared to 

single-modality approaches. 

4. Applications of Machine Learning and Deep 

Learning in WMH Research 

4.1 WMH Segmentation 

Accurate segmentation of white matter 

hyperintensities (WMH) is fundamental for 

investigating their pathological mechanisms and 

clinical correlations. Traditional manual 

segmentation, reliant on radiologists’ expertise, 

is time-consuming, subjective, and suffers from 

poor reproducibility. Deep learning (DL) 

techniques have significantly enhanced 

segmentation efficiency and precision through 

automation. For instance: Dadar et al. (Dadar et 

al., 2017) compared 10 classification techniques 

for WMH segmentation and demonstrated that 

the random forest classifier achieved optimal 

performance on a dataset comprising 

T1-weighted imaging (T1WI), T2-weighted 

imaging (T2WI), proton density (PD), and 

fluid-attenuated inversion recovery (FLAIR) 

scans, with a Dice Kappa coefficient of 0.66 ± 

0.17. One study (L et al., 2019) have proposed a 

context restoration-based self-supervised 

learning strategy for medical image analysis, 

which exhibited superior performance in 

classification, localization, and segmentation 

tasks across fetal ultrasound, abdominal CT, and 

brain MR images. Park et al. (Park et al., 2021) 

developed a multi-scale highlighted foreground 

U-Net for WMH segmentation, achieving the 

highest overall evaluation score, Dice similarity 

index, and F1-score in the MICCAI 2017 WMH 

Segmentation Challenge. Shan et al. (Shan et al., 

2021) clinically validated a DL-based automated 

system for segmenting cerebral small vessel 

disease-related WMH (CSVD-WMH), which 

outperformed existing methods on both internal 

and external test sets. A study (S et al., 2024) 

combined deep neural networks with 

Transformer architectures for automated 

cervical cancer segmentation and survival 

prediction, demonstrating superior 

segmentation performance and significantly 

outperforming traditional methods in survival 

analysis. 

4.2 WMH Quantification and Clinical 

Decision-Making 

Cerebral small vessel disease (CSVD) is a 

common neurological disorder predominantly 

affecting elderly populations. Its 

pathophysiological mechanism primarily 

involves microvascular structures, including 

small arteries, arterioles, capillaries, venules, 

and small veins, leading to clinical 

manifestations such as cognitive impairment 

and vascular dementia. Due to the nonspecific 

clinical presentation, diagnosis currently relies 

heavily on neuroimaging. White matter 

hyperintensities (WMH) represent one of the 

hallmark imaging features of CSVD, alongside 

other radiological markers such as lacunar 

infarcts, cerebral microbleeds (CMBs), enlarged 

perivascular spaces (EPVS), recent small 

subcortical infarcts, brain atrophy, and cortical 

superficial siderosis (cSS) (Hu Wenli et al., 2021). 

Previous studies on WMH (Erten-Lyons et al., 

2013; Pan et al., 2024; Williams et al., 2017; Zhai 

et al., 2020) have focused on associations 

between imaging features and clinical 

phenotypes, exploration of pathophysiological 

mechanisms, and prediction of cognitive 

outcomes and prognosis. However, these 

investigations often relied on cross-sectional 

designs, manual or semi-automated 

segmentation methods, and single-modality 

imaging analyses, resulting in limitations such 

as challenges in causal inference, high sample 

heterogeneity, inconsistent quantification 

standards, and insufficient biological 

mechanistic explanations. 

The integration of radiomics and deep learning 

(DL) has provided robust tools for WMH 

quantification. For example: Shi et al. (Y. Shi et 

al., 2022) conducted a bibliometric analysis to 

elucidate the intellectual structure and emerging 

trends in WMH research, emphasizing its 

associations with cognitive impairment, stroke, 

and neuroimaging characteristics in CSVD. 

Rudie et al. (Rudie et al., 2019) employed a 3D 
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U-Net model to differentiate glioma-related 

abnormalities from WMH in brain MRI data, 

achieving a Dice coefficient of 0.42, thereby 

demonstrating DL’s efficacy in processing 

multi-disease neuroimaging datasets. Rachmadi 

et al. (Rachmadi et al., 2018) proposed a 

convolutional neural network (CNN) framework 

incorporating global spatial information, which 

significantly improved segmentation accuracy 

by integrating spatial coordinates, yielding a 

mean Dice similarity coefficient of 0.5389. Huff 

et al. (Huff et al., 2021) focused on enhancing the 

interpretability of DL models, exploring 

visualization techniques such as 

Gradient-weighted Class Activation Mapping 

(Grad-CAM) and attention maps to decipher 

model decision-making processes. This 

advancement is critical for improving the 

transparency and clinical acceptability of WMH 

analysis. Collectively, these studies demonstrate 

that DL not only enhances WMH segmentation 

accuracy but also supports clinical 

decision-making through interpretability 

techniques, laying a solid foundation for future 

research and clinical applications of WMH. 

4.3 Cognitive Impairment Disorders and Mechanistic 

Insights into WMH Pathology 

Artificial intelligence (AI) has demonstrated 

significant value in predicting the association 

between white matter hyperintensities (WMH) 

and cognitive impairment. Feng et al. (Feng et 

al., 2025) employed VB-Nets, a deep learning 

convolutional neural network, to automatically 

identify and segment whole-brain subregions 

and WMH. By extracting radiomic features from 

WMH and bilateral hippocampal regions, they 

constructed a combined feature model to detect 

cognitive impairment in WMH patients. The 3D 

VB-Net algorithm exhibited strong performance 

in WMH segmentation (Dice = 0.789, lesion 

F1-score = 0.764). Additionally, studies indicate 

that combined analysis of WMH and 

Aβ-amyloid significantly enhances the 

predictive capability for cognitive impairment, 

particularly in early stages. For example, 

Lorenzini et al. (Lorenzini et al., 2022) evaluated 

regional associations between WMH and 

Aβ-amyloid across brain regions using PET 

imaging, revealing two distinct pathological 

patterns that significantly predict cognitive 

decline. 

Another study (da Silva et al., 2023) elucidated 

the mechanistic link between WMH and 

information processing speed (IPS) deficits in 

cerebral small vessel disease (CSVD) by 

investigating cortical thinning and network 

disruption. By assessing the mediating roles of 

cortical thickness and structural/functional brain 

connectivity in the relationship between WMH 

and IPS, the study identified significant 

associations (p < 0.05) among WMH 

volume/location, cortical thickness, brain 

connectivity, and IPS performance in CSVD 

patients. Specifically, frontal cortical thickness, 

functional sensorimotor networks, and the 

posterior thalamic radiation were identified as 

critical mediators of the WMH-IPS relationship. 

These findings underscore the importance of 

multimodal imaging data in early cognitive 

impairment diagnosis. Future research should 

prioritize the development of multimodal causal 

inference models to clarify the temporal 

relationships and interactions between WMH, 

neurodegeneration, and vascular pathologies. 

5. Conclusions and Future Perspectives 

The integration of deep learning (DL), machine 

learning (ML), and radiomics has introduced 

transformative methodologies for rapid plaque 

characterization and cerebrovascular event risk 

stratification. Despite these advancements, 

significant challenges persist, such as limited 

model interpretability, ambiguous correlations 

between high-dimensional features and clinical 

characteristics, insufficient reproducibility, and 

constraints in data quality and algorithmic 

robustness. Furthermore, most studies rely on 

single algorithms trained on small, single-center 

datasets lacking external validation, which 

compromises model generalizability. To address 

these limitations, future efforts should prioritize 

the following strategies: Clinical translation, 

enhancing AI transparency and clinical adoption 

through visualization techniques (e.g., gradient 

heatmaps) and medical knowledge graphs. 

Standardization, establishing unified imaging 

protocols and data acquisition workflows via 

multi-center collaborations. Data infrastructure, 

developing large-scale databases for head and 

neck atherosclerosis to improve model 

generalizability. Multi-Omics integration, 

combining radiomics with genomics, pathomics, 

and clinical biomarkers to elucidate molecular 

mechanisms and advance personalized 

therapeutics. 

Critical research directions include constructing 

multidimensional data fusion frameworks, 

leveraging HR-MR VWI radiomics to 

characterize plaque morphology, integrating 
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proteogenomic data to decode molecular 

pathways, and establishing precision prediction 

models that bridge imaging, molecular, and 

clinical domains. In parallel, ML/DL applications 

in white matter hyperintensity (WMH) research 

have expanded from basic segmentation tasks to 

mechanistic exploration and clinical prediction. 

Nevertheless, challenges remain: Data 

heterogeneity-inconsistent standardization 

across multi-center WMH datasets necessitates 

international shared databases (e.g., ADNI, UK 

Biobank) to enhance algorithmic robustness. 

Interpretability, the “black-box” nature of DL 

models hinders clinical trust, this limitation can 

be mitigated by integrating attention 

mechanisms (e.g., Grad-CAM) to visualize 

critical lesion regions. Multimodal limitations, 

overreliance on MRI underscores the urgency to 

incorporate PET (e.g., amyloid imaging) and 

liquid biopsy data, enabling holistic pathological 

mapping of WMH. 

By fostering technological innovation and 

interdisciplinary collaboration, AI-driven 

frameworks hold immense potential to 

revolutionize the precision diagnosis and 

treatment of cerebrovascular diseases and 

WMH, ultimately improving patient outcomes. 
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